
AD-A240 123

ASD-TR-87-5032
VOLUME 1

AIRCRAFT LANDING DYNAMIC ANALYSIS
VOLUME 1 EQUATIONS OF MOTION

John W. Lincoln
Structures Division
Directorate of Flight Systems Engineering

November 1987

Approved for Public Release; Distribution Unlimited

!TIC
SEP 0 9 1991,

DEPUTY FOR ENGINEERING
AERONAUTICAL SYSTEMS DIVISION
AIR FORCE 6YSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6503

A 91-09904



NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be avai-latc to ti general public, inciuding fureign nations.

This technical report has been reviewed and is approved for
publication.

OHN W. LINCOLN CLOVIS L. PETRIN, JR.
TECHNICAL EXPERT CHIEF, STRUCTURES DIVISON
STRUCTURES DIVISION DIRECTORATE OF FLIGHT SYSTEMS
DIRECTORATE OF FLIGHT SYSTEMS ENGINEERING
ENGINEERING

FOR THE COMMANDER

CHARLES D. CULLOM
DIRECTOR
FLIGHT SYSTEMS ENGINEERING

If your address has changed, if you wish to removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify ASD/ENFS, Wright-Patterson AFB, OH 4 543 3-6503 to help us maintain a
current mailing list.

Copies of this report should not be returned unless it is required by
security considerations, contractual obligations, or notice on a specific
document.



UNCLASSIFIED

"CuRITY CLASSIFICATION OF THIS PAGE
SForm Approved

REPORT DOCUMENTATION PAGE OMS No. 0704-0188

a. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.

. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASD-TR-5032, Vol 1

,a. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Deputy for Engineering, ASD, (if applicable)

AFSC I ASD/ENFS
c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson Air Force Base, Ohio
45433-6503

a. NAME OF FUNDING/ISPONSORING Bb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATI (If applicable)

1c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

OROGRAM I PROJECT ITASK IWORK UNITELEMENT NO.N.OI ACCESSION NO.

1. TITLE (Include Security Classification)

AIRCRAFT LANDING DYNAMIC At'ALYSIS
VOLUME 1 EQUATIONS OF MOTION

r2. PERSONAL AUTHOR(S)

LINCOLN, JOHN W.
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Final IFROM N/ A TO 1987, November 9 181

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD I GROUP SUB-GROUP arrested landing analysis landing dynamics

_ __ aircraft landing loads
dynamic response

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report is Volume 1 of a two volume report. The first volume provides the derivation of
the equations of motion and the second volume documents the computer program. The equations
of motion are derived for the general case of a flexible aircraft with rigid body motion
permitted in six degrees of freedom. The shock strut force equations are derived based on
the assumption that a gas-fluid shock strut is used. The hydraulic fluid is assumed to be
compressible in the shock strut. The arresting forces are derived for a cable arrestment
system. The equations permit landings to be made with unsymmetrical arresting forces. The
friction between the cable and arresting hook is accounted for in the derivation of the
arresting forces. The equations of motion for the aircraft are developed from Lagrange's
equations with the modifications included to use the body axis components of the airframe
velocity vector and angular velocity vector as quasi-coordinates.

?0 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 121, ABSTRACT SECURITY CLASSIFICATION
I UNCLASSIFIED/UNLIMITED C3 SAME AS RPT El DTIC USERSI Unclassifie

'2a NAME OF RESPONSIBLE INDIVIDI'AL 1b TELEPHONE (Include Area Code) T22c OFFICE SYMBOL

... (. 1 (513) 255-6879 ASD/ENFS
0 Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



FOREWORD

This report was prepared by John W. Lincoln from Structures Division of

the Directorate of Flight Systems Engineering, Aeronautical Systems

Division, Wright-Patterson Air Force Base Ohio. Its purpose is to provide

an analytical method for the accurate and rapid calculation of the loads on

an aircraft during landing. The report is written in two volumes. In the

first volume the equations of motion are derived and in the second volume

the computer program that was developed from these equations of motion is

documented.
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TNTRODUCTION

The analysis of an aircraft making a landing has interested dynamicists

for many years. This interest is derived from the technical challenge of

the problem and from the fact that the landing impact is an important loads

source for both land and carrier based aircraft. The inherent nonlinear

nature of the equations of motion requires that solutions be obtained by

numerical integration. The challenge, therefore, is in establishing the

equations such that solutions may be obtained with speed and accuracy.

Speed is required because of the need to minimize the computer costs derived

from the large number of cases that must be examined. Accuracy is essential

because it will reduce the need for ground testing to establish the forces

and the energy absorbing capability for a given landing gear geometry.

Further, and likely more important, an accurate analysis permits one to

extrapolate test conditions to design conditions that are difficult or even

hazardous to achieve by flight test.

The landing impact analysis in this report is believed to offer both

speed and accuracy. Speed is obtained through taking into account the

compressibility of the hydraulic fluid in the shock strut. The

compressibility is accounted for in the equations of motion through the

introduction of an additional first order differential equation. This, in

effect, allows the integration to proceed more rapidly than that obtainable

if the ususl incompressible hydraulic fluid assumption is used.

Accounting for the compressibility of the hydraulic fluid enables the

analyst to improve the accuracy of the solution. In many shock struts,



particularly in articulated landing gears, the pressures are large enough to

be significantly affectcd Dy the hydraulic fluid compressibility. The

details of the shock strut equations that account for compressibility are

found in Appendix B. Other features in this derivation that improve the

accuracy of the solution are six rigid body degrees of freedom, flexible

body degrees of freedom for the airframe and reprtentation of the

articulated kinematics of the landing gears in combination their flexible

degrees of freedom.

The equations of motion are derived with the stroke function of each of

the shock struts used as a generalized coordinate. This feature is

especially helpful when the gear is articulated. In this case the gear

kinematics and gear mass, damping and stiffness terms become functional

dependent on the shock strut stroke. The shock strut stroke function and

its derivative are obtained directly from the equations of motion instead of

deriving them from the axle displacement and velocity functions.

The equations of motion are derived from Lagrange's equations. The

rigid body motion of the aircraft is expressed in terms of the body axis

components of the aircraft velocity vector function and body axis components

of the aircraft angular velocity vector function. These coordinates are

quasi-coordinates and the usual formulation of Lagrange's equations must be

modified to account for the fact that these coordinates are not generalized.

Lagrange's equations must also account for a non-holonomic constraint

condition on the vertical motion of a point on the tire footprint in contact

with the ground. This constraint condition is expressed by a relationship

involving the velocity and angular velocity terms. It is found that the

2



Lagrangian multiplier in the equations of motion is the vertical ground

reaction on the landing gear tire. The modification of Lagrange's equations

fo, quasi-coordinates and for non-holonomic constraints is given in Appendix

C.

The aircraft flexibility is represented by orthogonal vibration modes.

The influence of this flexibility is included in the calculation of the

shock strut forces. The loading on the aircraft from the landing impact may

be calculated from the displacement or acceleration defined by the flexible

and/or rigid body coordinates.

Finally, the equations are included for the calculation of the forces

from a cable type arresting system. It is assumed that the aircraft is

equipped with an arresting hook. The equations are derived so that the case

where the arresting hook meets the cable off center and the aircraft motion

is unsymmetrical is included. The condition under which the hook will or

will not slip on the cable is derived and the resulting cable kinematics are

incorporated in the equations. The details of this derivation are given in

Appendix F.
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DERIVATION O7 THE EQUATIONS OF MOTIUN

The equations of motion for the simulation of the landing impact of an

aircraft are derived below. The following degrees of freedom are included

for the airframe:

Three translational degrees of freedom for the rigid airframe

Three rotational degrees of freedom for the rigid airframe

Flexible body degrees of freedom for the airframe represented by its

vibration modes

For each 7& the landing gears the following degrees of freedom are

included:

Rigid body motion of the gear relative to the airframe that is dependent on

the shock strut stroke only

Rigid body motion of the gear relative to the airframe that is dependent on

castoring of the gear (all gears are assumed to have this degree of freedom)

Flexible body degrees of freedom for the gear represented by its vibration

modes

Rotational motion of the gear wheel about the gear axle

The height above the ground of the ground reference point, Ca, in the

wheel midplane, will be included as a generalized coordinate in the

formulation of the equations of motion. However, a constraint condition on

the height of the airframe reference point, N, above the ground provides the

means to eliminate this coordinate from the final equations of motion.

4



The six rigid body motion of the airframe may be described by several

different coordinate systems. For the landing impact problem, it is

convenient to use the body axis components of the airframe velocity vector

function and the body axis components of the airframe angular velocity

vector function. In general, motion associated with any one of the six

degrees of freedom can have an influence on the the landing gear and the

airframe loading.

The airframe flexibility may have a significant effect on the shock

strut forces and consequently must be included in the equations of motion.

The airframe flexible body equations are also essential if the airframe

dynamic response loading is to be computed. This flexibility may be

accounted for by several techniques, howv"er, the vibration modes which are

orthogonal appear to be The most efficient. For th-s derivation it is

supposed that these tiormal modes are available. It is further supposed that

the structural danming effects can be simulated adequately by linear viscous

damp ig of each mod independently.

The shock strut stroke function is used as a genor, Azed coordinate in

the derivation. Consequently, -he shock strut force functions as developed

.In Appendix B are eyr-essed in terms of the stroke and stroking velocity

functions. Appendix B gives the neccessary equations for two of the many

possible gas and fluid shock strut configurations. For both of these shock

struts the pressure in the high pressure s~de is calculated from the

compression of the fluid. At a time t the rate of change of the fluid

compression with time is formulated from the shock strut stroking velocity

and the volu:e of fluid passing through the orifice. Consequently, another



integration is added to calculate the compression of the fluid.

Th1j approach may appear to be inefficient when compared with the usual

velocity squared damping assumption. However, this additional integration

provides stabiiity to the numerical integration process and consequently

permits the use of a larger step size. Treating the fluid as compressible

also provides a more accurate representation of the shock strut fluid

pressure since for some shock struts (particularly in articulated gears) the

effect of compressibility is significant.

There are several unit vector Eystems included in the derivation of the

equations of motion. An inertially fixed set of unit vectors is used as a

basis from which the motion of the aircraft is defined. At a time t after

the aircraft has contacted the ground surface, an airframe fixed set of unit

vectors are oriented in space with yaw, pitch and roll Euler angles for the

;airframe. To provide some simplification in the development of the

geometric data and mass terms, each gear has a set of unit vectors that

permits roll and pitch of the gear -eference axes relative to the airframe.

In addition, a unit vector system that is fixed in the eastored gear

reference system is provided. Since the wheel plane, because of geometrical

constraints, may not be conveniently oriented by the gear fixed unit

vectors, a separate coordinate system is fixed in the wheel plane. These

wheel-plane unit vectors are used in the derivation of the components of the

ground force on the tire. Thi: deri -t.on is given in Appendix E.
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Kinetic Energy Formulation

The derivation of the equations of motio.n is accomplished through

Lagrange's equations. The use of these equations is believed to offer a

significant advantage over the direct apolication of Newton's second law

because of the relative ease in deriving the equations for the articulated

gear geometries. At a time t after the aircraft has contacted the groun

surfac- the kinetic energy of the aircraft is divided between the airframe

(i.e. the complete aircraft minus the gears) and the gears. The gear

kinetic energy is divided between the wheel and the gear structure minus the

wheel. The following definitions are needed:

Q is an inertially fixed ground reference point.

N is a reference point in the airframe. The derivation is made with the

assumption that this is not the aircraft center of gravity. However, if the

center of gravity i. used for N then some simplifications are realized.

T is the a gear trunnion to airframe attachment point.a

A is the point that is common to 'he a gear wheel midplane and the a gara

axle centerline.

CF is the point that 1s contai.ed in the ground surface at the center of
a

pressure of the a gear tire.

C a is a point that is common to the wheel midplane and the line througl, the



point CF  that is perpendicular to the ground.
a

H is the point of attachment of the arresting hook to the airframe. It is

supposed that the arresting hook rotates about an axis through the point H

and parallel to the lateral axis of the airframe.

LP is the lateral pivot point in the arresting gear shank.

P is the aerodynamic reference point.

TL is a point in the engine(s) thrust line.

VB is the aircraft volume containing a set of mass points with each mass

point labeled by a Cartesian coordinate system fixed in the airframe which

for this purpose is assumed to be in a "jig" or undeformed condition. These

mass point labels stay the same when the structure is deformed as a result

of external loads, however, in this case the mass points move relative to

each other. The concept of a jig condition is useful for the definition of

certain vectors that permit the rigid body motion of the structure to be

separated from the motion of the structure due to deformation.

NG is the number of gears on the aircraft, a is in [1, NG] and VG  is the a

agear volume excluding the wheel. The gear mass points are labeled in a

manner similar to that used in the airframe. The jig condition of the gear

is defined with the shock strut in the fully extended position.

VW  is the a gear wheel volume.
a

8



PB is the simple ourface such that if (xBI xB2 xB3 ) is in VBy

QB(XB 2 XB3

,r~B XB B is the mass density at the airframe point labeled

(xBI XB XB3).

P is the simple surface such that if (x 1 G 2 'G 3) is in V.
a a a a a

PG (XG XG 2 XG 3) is the mass density at the a gear (without wheel)
a a a a

point labeled (xG , xG 2 xG 3
a a a

1W is the simple surface such that if (xW 1 Xw 2 X 3) is in VWa a a a a
1 2 3

W (Xwa Xw2 Xw ) is the mass density at the a gear wheel point labeled
a a a a

1 2 3
(xw , xw  , xW

a a a

RB is the vector function such that if (xB1 Y XB2 Bx3 ) is in VB and t > 0,

1 2 3
B 2B XB XB t) is the vector at the time t from the ground reference

point Q to the airframe point labeled (XB1' XB2 XB3).

R G is the vector function such that if (xG 1 XG 2 G is in VG  and

a a a a a

t > 0, RG (xG , XG , XG , t) is the vector at the time t from the point
a a a a

Q to the gear (without wheel) point labeled (xG , xG 2 xG 3

a a a

RW is the vector function such that if (x 1 2, X 3) is in Vw  andWa a ~Xa Xa)i Va an

1 2 3t > O, RW (xw 1, xW, XW , t) is the vector at the time t from the point
a a a a

Q to an the gear wheel point labeled (xW 1, xW 2 xW
a a a

9



Therefore, if T is the simple graph such that if t > 0, T(t) is the

kinetic energy at the time t of the collection of mass points, then with the

derivative notation described in Appendix A, T may be expressed by

JBBBI dVB + 121/2 2 P +f )/2 P, dVG (1B B;It)a=1 G a ;It) a a
NG V - .2a

+ 1/2 I ; )2iPw dVw
a:1 d W a t a a

a

The RB vector function must be expressed in terms of constituent vector

functions in order to develop the equations of motion. For this purpose the

following definitions are needed:

F is the vector function such that if t > 0, r(t) is the vector at the time

t from the point Q to the jig condition location of the airframe reference

point N labeled (x 2 X 3).XN 'XN ' N

LB is the vector function such that if (xB1, xB2 , xB3 ) is in VB and t > 0,

LB(xB XB2  XB 3,t) is the vector at the time t from the jig condition

location of the airframe reference pcint N to the jig condition location of

the airframe point labeled (xB1  XB2 XB3)

U B is the vector function such that if (xB1, x 2  XB3) is in V B and t > 0,

1 2 3
UB(x B I , XB 2, x83 , t) is the vector at the time t from the jig condition

location of the airframe point labeled (xB , XB2, XB3) to the actual

location of this point.

10



Therefore, the vector

RB(XB 1, XB XB 3, t) = r (t) + LB(XB I, 1 XB XB 3, t) (2)

1 2 3  t+ UB(XB I XB2 xB',

can be used to derive the vector function B"

The vector functions for expansion of RG are defined as follows:
a

1T is the vector function such that if t > 0, (t) is the vector at the
a a

time t from the jig condition location of the airframe reference point N to

the jig condition location of the point T aa

a is the vector function such that if (xG 1, XG 2, XG 3) is in VG and
a a a a

t > 0, Ga(xG I, XGa Xa , t) is the vector at the time t from the jig
a a a

condition location of the point T to the jig condition location of the a
a

gear point (xG 1 XG 2, XG 3). The jig condition for the a gear
a a a

is determined with the shock strut stroke equal to zero (fully extended

gear).

sa is the simple graph such that if t > 0, s a(t) is the a gear stroke at the

time t.

-1 2 3a is the vector function such that if (xG , X , XG )is in VGa Xa a a Ga

andt 0 ( 1 2 3
> a (xG XG x , s a(t), t) is that part of the vector

a a a

at the time t from the jig condition location of the a gear point

1].



(xG 1, XG 2 XG 3) to the actual location of this point which is derived
a a a

from the rigid body motion of the gear as result of the stroking of the

shock strut.

GG is the simple graph such that if t > 0, G G (t) is the a gear castor

a a

angle at the time t. Normally, only t). auxiliary gear is permitted to

castor. However, for symmetry of the equations of motion, all of the gears

in this derivation will be assumed to have this degree of freedom.

1 2 3UBG is the vector function such that if (xG  , xG , XG ) is in VG  and
a a a a a

t > 0, UBG (x G , XG 2, XG 3 sa(t) , 
0 G (t), t) is that part of the vector

a a a a a

at the time t from the jig condition location of the a gear point

(xG 1 , XG 2, XG 3) to the actual location of this point which is
a a a

derived from the deformation of the airframe. Note that the shock strut

stroke and the castor angle dependence appears explicitly in this vector.

This provides for a simpler formulation when the deformation vector is

expressed in terms of its components.

1 2 3UG is the vector function such that if (xG , X , XG ) is in VG and
a a a a a

t > 0, UG (xG , x 2 X 3, sa(t) , OG (t), t) is that part of the vector
a a a a a

at the time t from the jig condition location of the a gear point

1 2 3(xG , x G , xG ) to the actual location of this point which is
a a a

derived from the deformation of the a gear.

Therefore, the vector

1')



G (XG XGa XG , t) =(t) + 'T (t) (3)
a a a a a

+ a (x G X GA2 I 3 t) + a (xG GI 2 3a a(t ) , t)

+ BG (x , XG 2 , xa(t) 0 G (t), t)
a a a a a

+ G (XG 1, XG 2, XG 3, Sa(t ) , OG (t), t)
a a a a a

can be used to derive the vector function RG
a

The final vector function needed for the kinetic energy formulation is

RW The vector funotions used to define RW are defined as follows:
a a

If (XG XG 2, XG 3) is the label of the a gear axle point, Aa, and

a a a

if t > 0, then

a (t) :a(XGA 1 2 3
(t) a XGA XG A

a A A A
a a a

a(sa(t) , t) (x 1.2X 3(G I (t) 2 3

A a aGA GA GA a
a a a

UBGA (sa(t)' &Ga(t)' t) UBG (xG XGA 2 XG A a(t) G (t), t,

a a a a

UGA (Sa(t)' 0 G (t), t) UG (xGA , XGA 2, XGA 3, Sa(t), 
0 G (t)' t),

a a a a

at the time t.

1 2 3a is the vector function such that if (xw , xw 2, x 3) is in VW  and
a a a a

t > 0, Wa (xw 1I X 2, X 3, Sa(t), t) is the vector at the time t from the
a a a

axle point A to the jig condition location of the point in the a geara

labeled (xW 1, xw 2, xw 3
a a a

13



Therefore, the vector

RWa (xw aI, Xw 2, w a3, t) = r(t) + 1 T Wt + gA Wt + 6A (s a(t)' t) (4)

a a a a a a

+ UBGA (sa(t)' 0 G (t), t) + UGA (Sa(t), Ga(t), t)

a a

+a xWa XW 3, a (t), t)

can be used to derive the vector function
a

To be useful for the kinetic energy equation (equation (1)), the

structural deformation vectors appearing in equations (2) through (4) must

be expressed in terms of generalized coordinates. This may be done through

the use of the vibration modes of the structure. Orthogonality of these

modes is assumed in this derivation since this property is typically used in

practice.

Suppose that NBE airframe vibration modes are used to define the

airframe deformation. Further suppose that b is an integer in [1, NBE] and

that qBb is the simple graph such that if t > 0, qBb W)is the bth airframe

vibration mode displacement at the time t.

Also, suppose that

()B b is the vector function such that if (xB XB XB3) in VB and t > 0,

1 2
Sb(xB , X B XB 3, t) is the bth airframe vibration modal vector at the

time t for the airframe point labeled (XB1, XB2 XB3

14



BG ais the vector function such that if (xG a xG 2 XG 3) is in VGb a a a a

and t > 0, BG (xG I, Xe 2, XG 3, sa(t) , 
0 G (t), t) is the bth

ab  a a a a

airframe vibration modal vector at the time t for the a gear point labeled
IX 2 3)

(xG a xG , a),
a a a

and

)BGA is the vector function such that if t > 0,

b (a (t)' G (t), t) is the bth airframe vibration modal vectorBG A a

ab

at the time t for the a gear axle point A aa

Now suppose that for the a gear there are NGE gear vibration modes
a

used to define its deformation. Suppose that d is an integer in [I, NGE

and that qG d is a simple graph such that if t > 0, qG d (t) is the dth a
a a

gear vibration mode displacement at the time t. Also suppose that

tG is the vector function such that if (xG 1 XG 2 XG 3) is in VG  and
ad a a a a

t > 0, IG (xG I XG 2 xG 3 Sa(t), 0 G (t), t) is the dth a gear vibration
ad a a a a

modal vector at the time t for the a gear point (xG 1 x G  , xG 3

a a a

and

VA is the vector function such that if t > 0, ( (sa(t) , G (t), t)GA - GA a
ad ad

is the dth a gear vibration modal vector at the time t for the a gear axle

point Aa

15



Therefore, the deformation vectors may be expressed as follows:

U B x 1  B2  B3 , t = B ( B1  B2 B3 t) q b ~
B ,xB' B'' , , B, x t) q ,()

where summation on the index b is implied.

BG (xG 1 xG 2 XG 3, Sa(t ) 0 G (t) t)

a a a a a

G (xG 1 XG 2 xG 3, s (t) t) qBb(t)
a b a a a a

UBG (S(t), 0Ga(t)' t) =)G A (sa ) (t) t) t) q b (t).

BGA a B A a G()
a ab

S x 1  2 3 0 tt
G (x G I G 2 XG 3, S a ( G (t) t)

a a a a a

1 2 3 d
4"G (xG I XG XG , s a(t) V G (t), t) qG (t).

a d a a a a a

(sA ((t) G(t)', t) : G (a(t) e(t), t) qa d (t ) "

GA a P A as a
a ad

At this point in the derivation consideration must be given to the

order of magnitude of the deformation of the structure. The general case of

large deformations, which is described in Reference (1), could be applied.

However, this additional complication for most aircraft structures does not

appear justified. Therefore, it will be assumed that the deformation is

small enough such that terms in the kinetic energy expression involving the

b d
qB functions and the qG functions can be eliminated. Also, it will be

a
assumed that the motion of the body axis reference axes is completely

defined by the rigid body equations of motion. This assumption is also

justified from the assumption of small structural deformations.

Therefore, from equations (2), (3) and (4) the velocity vectors may be

16



written with the aid of the following definitions:

BS is the vector function such that if t > 0, B (t) is the airframe

angular velocity vector at the time t.

G is the vector function such that if t > 0, 92G (t) is the a gear
a a

castoring angular velocity vector at the time t.

W (t) is the vector function such that if t > O, 0 w (t) is the a gear
a a

wheel angular velocity vector at the time t.

Thus, with the assumption of small deformations, the velocities may be

written in the following vector format:

1 2 31 2 3

RB;I t(x BI XB2 XB3, t) = r'(t) +&q B (t) x ELB(x BI , X B2 XB3 t) (5)

+ (KB , XB , XB 3, t) q b'(t).

G (KG 1 2 3 : '(t) s(t) x iT (6)a;I t a a a a

+ B( t ) + G (t)) x x xG ' xG  t)
a a a a

1 2 3
+ ( t ) + x, G , G Sa(t), t)

B aG aa a a a

+ a (xG K 2, KG Sa(t) t) s (t)

abS a a aa

+'IBG (xG 1, XG 2 xG 3, sa (t), OG (t), t) qBb(t)

+ TG (x G  x G 2 1xG 3, Sa (t)  G (t), t) qG d'(t)

ad a a a a a
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w a;I (xWaI ' X a Xw t' : (t) + B, t) X 1Ta(t) (7)

Q t + G(t0) X 9gA ( -I *  (t ) + 'G (t)) x I .Sa(t), t)
a aa

a a a a

+ 6Aaa (sa(t)' t) sa '(t) + BG A (t), t) qBb'(t)
a;S s A a

"4GA (sa(t) CG (t), t) qG '(t)

A a aad

+ (2 B(t) +SaG (t) + W (t)) x Wa(xw XW Xw , Sa(t), t)
a a a a a

+ ; (x I a W 2w a xW a3,' Sa (t), t) s a l)

aa a a a

The vector functions RB;I ; and R may be easily derived
Bt Ga'; t wa'; tfrom equations (5), (6), and (7).

Before RB;It , RGa;I t and RW;It are substituted irLo the kinetic energy

equation (equation (1)) it is convenient to express the vectors appearing in

these functions in terms of their components. To accomplish this, several

sets of right handed orthogonal unit vector functions nced to be defined.

Suppose each of Bb; b = 1, 3 is a unit vector function such that if

t > 0, iB1(t) is the vector parallel to the airframe longitudinal axis and

directed forward, i B(t) is parallel to the airframen lateral axis and

directed to the right relative to the pilot and i (t) is parallel to theB3

airframe vertical axis and directed down relative to the pilot at the time t.

To orient the airframe in space relative to an inertial reference frame

defined by the unit vectors 'b; b = 1, 3, a set of Euler angles is used.

For this purpose suppose that each of 4j, Oand 4 is a simple graph such

18



that if t > 0, 4P(t), O(t) and (t) are at the time t the yaw, pitch and

roll uler angles of the airframe. These Euler anglep are used in the

transformation

(t 7 Bb(t) 1b,
C C

where the components of YBb(t) are derived in Appendix G.
C

From Appendix G it is seen that 1I and I2 are in the ground platie and

13 is perpendicular to the ground.

Also, suppose that each of iG  ; b = 1, 3 is a unit vector function

ab

and each of 77 and G is a number such that ?G is the pitch Euler
a a a

angle and G is the roli Euler angle for the a gear relative to the
a

airframe such tat if t > 0, each of t G t); b = 1, 3 are fixed relative

ab

to the a gear at the time t and are oriented relative to the airframe fixed

unit vectors through the transformation

G (t) i Gab B b(t),

c C

whore the components of T/ b are derived in Appendix G in terms of the
%a

Euler angles 7G and G
a a

Suppose that each of G ; b = 1, 3 is a unit vector function such that

ab

if t > 0, each of JG (t); b = 1, 3 is a vector fixed in the a gear at the

ab

19



tiLie t. The castor angle, 4s used to orient these vectors with respect
a

to TG (t); b = I, 3 vecturs through the transformation
ab

A e - (t) e cg
JG (t) = G be

ab a ag c

A e
where aG (t) is defined in Appendix G.e

a
g

It is also useful to define the transformation from the airframe fixed

unit vectors i B(t); b = 1, 3 to the a gear fixed unit vectors

3G (t); b = 1, 3. This may be done through a combination of the
ab

transformations defined above as follows:

-" A ee de 6

JG (t) = e Ct) GGd (t) (t) 3bcaag c

~Gd(t) " (t).a ab ld

d

The components of CL Gdare given in Appendix G.
ab

Suppose that each of k ; b = 3 is a unit vector function such that
ab

if t > 0, each of k(t); b = 1, 3 is fixed in the a gear wheel at the titre
G
ab

t and kG (t) is a unit vector parallel to the a gear wheel axle.
a 2

Therefore, the vector kG (t) may be expressed in terms of the vectors
aa2

JG (t); b = 1, 3 by the relation
ab

20



kG (t ' $ b(t) 3G (t),kG 19G b G
a2  a2  a b

where from the gear kinematics there exists a set of functions

BG b; b 1, 3 such that
a2

Q b (t ) :BG b(s (t)); b = 1, 3.JG G Sa'

a2 a2

Now suppose that each of IW ; b = 1, 3 is a unit vector function such
ab

that if t > 0, 1W (t) is 13' IW (t) is orthogonal to kG (t) and 1W  (t),
a3  aI  2 a3

and 1 W (t) is orthogonal to W (t) and IW (t) at the time t.
a2  a a3

The transformation from Ib; b = 1, 3 to IW  (t); b =1, 3 is defined in
ab

Appendix E and is given by b

W (t) = W e ( t ) c 8be 8 c g

a b ag

With the aid of the unit vector functions defined above the linear and

angular velocity functions are defined by

b b b

B B 1B'

b

a a a3

W G
a a a2
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The vector functions in equations (5), (6) and (7) may be defined by

E B L B b Bb'

b

T a T b iBb,
a a b

a a G
ab

b

a a ab

a = W-ab  G
ab

a a ab

Wa a G
ab

Finally, the modal vector functions for the deformation of the airframe

and the gears are defined by

cB B C B
b b c

t BG (L'BGc
a b ab  ac

~BG A BGA G
SBA - BA ia

ab ab  c

c -

a b ab  ac

b c

GA GA Ga
Ga a

ab ab
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Therefore, with these definitions the kinetic energy function T may be

expressed in the following form:

VV B B
vBcv B b BnB b a-

T = 1/2 (M b c)V VBB + 1/2 (M b c)IS a OG ; a = 1, NG I IB Ba

N G I ' N G RW &W

+ 1/2 . (M a a)[s SG)2+ /2 (M a a) 2

a G ~ Waa=1 a a=1 a

NG Sa Sa qB qB

1/2 G M A I 2s1 + 1/2 (MB )'LS a 1, N,1 q Cq
/M a b c)Sa' ' BB

a=1 a

N G QG q G* 1/2 .(M a ba )[sa b I qGb cl
b c a' GG qGG

a=1 a a a

VB B

* (M b c)[Sa G ; a = 1, NG] vB
a

G B G NG B a
+ 2 (M b a)[a VO b I'*G + - (M b )CSa' O-G ] VB Sa'

a=1 a a a:1 a

VB V b NG VB qG

+ (M )[s ; a = 1, NG] VBb qc ' + (M b a)[S G ] VBb q
a a=1 a a

a a=Ba b

NG fB nG bNG S B 2Wb
+ (M b a)[sal OG ]QBb G + * (M b )[sa, G 10' B W

a=1 a a a=1 a a

NG IQB a bB qB
+ I (M )[s a  ; a 1 , NG] qbc

a1 b a Ga Bs +(M b )[Ssa' eG a'  G] B q B

a=1 a a

" (M a'c 6~B qG
a:1 a a

N G G ' W NG G Sa
+ _ (M a a)[s 'G W + (M a )[Sa] G '

-a G 0LW a] G Saa=1 a a a=1 a
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NG qB NG qG

+ I (M b)[Sa' G ] G qBb ' + I (M a ab)[Sa' OG ] G q G b

a:l a a a=1 a a a

NG Sa qB NG Sa qG
+ _ (M )[S ] ' ' + . (M a)[s bb a' GG sa B b a' '-'0 a

a=1 a a=1 a a

NG qB qG
+ (Hba )ls 0  ] b ' qG c,+ X (M b ac )sat GG qBbIqGc

a=1 a a

where the mass terms in the expression above are defined in Appendix D and the

bracket product notation is defined in Appendix A.

Suppose that K is a simple surface such that the kinetic energy function T

given by equation (8) may be written in the form

1 2B 11EN

T = K[V B V B2, V B , 2'BI  B 2  , B 3  9 IQG 1 , ,9 (9)N

S1 W 1 ... 19WN ' SN G'i Bi I qBN BE? qG1if q GNGNGE NG,

,G1 ... I G NG s ,  ... ,SNG ].
NG G 1NG

It is seen that the function T formulated in equation (9) is expressed

partially in terms of coordinates (i.e. functions) referred to in Reference (2)

as quasi-coordinates. Namely, the body axis components of the airframe velocity

vector function and the body axis components of the airframe angular velocity

vector function are quasi-coordinates. Appendix C describes the modifications

to Lagrange's equations when quasi-coordinates are used.

Suppose that a; a 1 1, 3 are the components of r (the vector from the

24



point Q to the jig condition location of the point N) in the inertial reference

frame defined by Ib; b 1 1, 3. It is useful (e.g. in Appendix F) to use the

symbols d, s and v as alternate designations for these components.

Therefore, if 41, Oand are the yaw, pitch and roll Euler angle

functions which are discussed in Appendix G, then consistent with the notation

of Appendix C, the following generalized coordinates are used for the airframe

rigid body motion:

q 1 = d. q .

q = = S. = .

Also, the following relations are consistent with Appendix C notation:

1 1 14V V B B
V 2 VB2V5 = B 2.= VB2 . ~

V3 =VB3 . V6 = B3.

The transformation from the quasi-coordinates to the generalized

coordinates is

qa, = i vb,

where from Appendix G it is found that

sin[ I sin[e] cos[4], cos[] sin[&] cosi ],

8 cos[60] sin[], '2 Cos[ I/ Cos [] - sin[4l] cos[l] +

COsn[] COS[] 3 sin+

25



2 = sin(O], 3- sin 4)] cOs[Ojq, ,8 3 cos[4)]I CoOA,

1 2

62 , sin []/cos[o], )9 os[( 1]/cosro1,

and all other a 0.

The elements of the inverse transformation

V C a qb I are

a COSAV CosL'r'j, 'C'2 = cos[O] sin ['t'J, a'.= - i[1

2 [1p], cos4 + = Cos[ 2 = sin[~J oos[O],

sin[( sinA ~ cos(4'], sin[ )] sin[O3 sin~l,

a3=sin~lP] sin[( ] + a3 - sin[4 I cos[ *1 + Ct3 cos[(k] cos(O],

Cos [kI si[9 I c 0oPI, cos(( ] sin[ 0 3 sinhi'P],

5a ,t4=1 Ct 4 = - sinEO],

c oL~ 5ai4 t5 ,C = cosEOI sin[4)],
45=O 6

-, 6 i[a6=0 6 = CoOA cosId)1,
45 6

and all other a a 0

26



For a in [1, 6] and b in [1, 6], the Qa functions which are defined in
b

terms of CLa and a in equation (C-11) of Appendix C are
b1

1 2 : 'B 3 B'

1=0, - V , 2
4 5 B 6 B
J VB f2 - o

1 2 =  , 3 -' B

n3- g2 1 = 0,

4 = -B '5 B6

O, 5 - B 3  6 =  B 2

n 5 nJ 3 = o, 05 =gn 1,
4 B' 5 B

-B' 52 B' 6 0

a O

and all other .b =

27



The Forces Acting on the System

The quasi-coordinate force terms may be defined through equation (C-18)

of Appendix C. Included in these terms are the body gravitational force,

the arresting gear force, the ground force (parallel to the ground plane),

the aerodynamic force and the thrust force. There are also some generalized

coordinate force terms that must be included in the equations of motion.

These include the shock strut forces, the airframe modal elastic and damping

forces, the gear modal elastic and damping forces and the gear stiffness and

damping forces associated with castoring. The notation on the left side of

equation (C-18) will be used for both quasi and generalized coordinates.

Consistent with the definitions given in Appendix C and with g equal to

the gravitational acceleration the virtual work done by the gravity force is

8W(t) fB (RB (IxB I , t) 3 B g dVB

NG 1 2 3 t I PG

+ X ( 3RfG (I x , I x G  t) 3) gdV
a=1 G a G G G a a

a a a a

+ Y(3RW (IXw I 2 3, t) 3) PW g dVw

a=1 fW a W W W a aa a a a

Therefore, based on Appendix C, the vector functions

SRBO 8 RG and SRW may be replaced by
a a

RG and RWa respectively.

t' a;t at
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Thus,

W(t) = JVB (AB,'It (IxBI xB2  xB 3  t) 3 ) PB g dVB (10)

N G 1r
+ V (K t (x I I 2 , 3, t) I3) PG g dVG

a=1 G a' G X G G a aa a a a

+NG f I 2, I ,t) ) PW g dVW:I W (RWaI (Ixw Ii w  Iw . P .
a=1jVW aw;It W'x ' x x W a a

a a a a

If equations (5), (6) and (7) are substituted into equation (10) and if

the mass terms defined in Appendix D are utilized, then the following

functions are found to be the coefficients of the coordinate velocities:

VB VB VB

b dd

B Bd

SW b(t) = g (M c b )(s (t), Ga(t); a 1 1, NG) B(t) 8 (b 1 3).

S w n a (t) = g (M cB S-a) (sa(t)' 1 W (ta 8

a d

'VBSG

S W q C t) g (M VBc q B C (sat), 0G (t); aY~t = ,NG Tcd )8 d ( 1 B

aa d

SW a (t) g (M Bc a )(a(t) OG t )) ' (t) 8
cd  (b = 1, NGEb a d

b a d NGa

These functions are the contributions from the body gravity force to
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the total quasi-coordinate force and will be used in the equations of motion

VB

(equation C-16). For example, the simple graph SW will be included on
b b

the right side of the VBb equation of motion.

Suppose that F HP is the vector function sucn that if t > 0, F HP(t) is

the force at the time t acting on the point HP from the arresting hook.

The point HP is defined in Appendix F. Also, at the time t, F H(t) is the

force on the lateral pivot point, LP, from the lower arresting hook segment

and is directed along a line from LP to HP. FH(t) is equal to - FHP(t).

Further, suppose that rLP(t) is the vector function such that if t > 0,

r LP(t) is the vector from the ground reference point Q to the point labeled

LP at the time t.

The virtual work done by the arresting force is therefore

3WH W TH(t) r LP(t).

Now suppose that

I H is the vector function such that if t > 0, 1H(t) is the vector from the

jig condition location of the airframe reference point N to the jig

condition location of the point labeled H, which is the point of attachment

of the arresting hook to the airframe, at the time t,

ILP is the vector function such that if t > 0, 1LP(t) is the vector from the

jig condition location of the point H to the point LP at the time t,
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B is the vector function such that if t > 0, Bb(t) is the bth

airframe modal vector at the time t for the point labeled H,

is the vector function such that if t > 0, NB (t) is the bthXtHb -- Hb

airframe modal slope vector at the time t for the point labeled H and

Hi (t), TH (t) and 1H (t) are the unit vector functions such that if t > 0,

iH (t) has the direction of - iLP(t), 1 Ht) is i (t), and

H3(t) is orthogonal to -H1(t) and 1H (t) and is directed down

with respect to the pilot. See Appendix F for derivation of these vectors.

Therefore, the vector Lp(t) may be written as

- - brLP(t) = F(t) + H(t) + Lp(t) + Hb(t) qBb(t)

+ xB(t) q b(t)) .H t) x iLp~t) q~bt)
BH H 3 H3 L

Based on the assumption of small airframe deformations the vector

function r may be differentiated to obtain

rLp'(t) :'(t) LP+ B(t) x 1H(t) + (QB(t) "H C3(t)) H 3(t) x i LP(t) (11)

B t) q b(t) + (B t) I (t)) 1 (t) x 1Lp(t) q b(t).
+IBHb B B()H 3 H3 L

The vector rLP'(t) may be used as a replacement for 8rH(t) in the

virtual work equation for the arresting gear force. The following

31



definitions may be used to expand the vectors in equation (11):

b

FH  is the simple graph such that if t > 0,

F H(t) F Hb (t) Ib at the time t.

Each of C H and T Hd; c 1, 3; d = 1, 3 is the simple graph derived i

3 c
Appendix F such that if t > 0,

H3(t) = a[H3(t) H (t) 'd at the time t.
3 3 a

a and b1 are the simple graphs derived in Appendix F such that if t > 0,

TLP(t) a1(t) B1 (t) + b1(t) B 3(t) at the time t.

F'(t) :VBC(t) V B (t).
c

d .
H t IH B d(t).

BHb~t :)bH I ict)

~P (t) = 'Y, 0 i (t).VB HB H BHb bH c

b b

It follows then that after the indicated vector operations on equation

(11) are performed the following coefficients of the coordinate velocities

may be interpreted as the quasi-coordinate and generalized coordinate force

contributions from the arresting force:
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VBd

SH  b(t) (t) F H(t) 8c d  (b 1, 3).
b

+ (TBg(t)QHh W "HP(t) ) e sdr FHb
C 3 h p

x a t) Hfd(t) (a1(t) 'YB(t) + b1(t) (t)) 1
H3 T f 1 11 T 3b

SH Bt) B(t) dQB c FHg ( t ) 8fg
b c H bg

+ (~H ~ h(t) eYHPt) qpgte)
Hb c 3 h

f dt r'~t ra(t W)~t 8 -9t ' (b 1, NB)x LF3 W Hf ()(1W B1W +b 1W B3 qB

Now suppose that FG is the vector function such that if t > 0,
a

FG (t) is the force on the a gear wheel from the ground a, the time t.
a

Also, suppose that r is the vector function such that if t > 0,

a

C (t) is the vector from the ground reference point Q to the point rFF a
a

(the a wheel tire footprint center of pressure).

Therefore, the virtual work of the force from the ground on the tires

is

NG

8 W G(t) I P G t) Sr ()
a:1 a F

a
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It is noted that this expression is the virtual woik done by the ground

forces parallel to tae ground plane. These ground forces are derived in

Appendix E. The generalized forces from the ground which are normal to the

ground plane will be derived from the potential energy stored in the tires.

To make the virtual work expression above more usable the vector

r (t) must be expressed in terms of the system coordinates. This may

a

be accomplished as follows:

Suppose w is the vector function such that if t > 0,

a
c (t) is the vector at the time t frvm the point Aa (the a gear axle

a
reference point) to the point C (a point that is common to the a gear wheela

center-lane and the vertical ground force vector).

Further, suppos- that v W is the vector function such that if t > 0,

a
W (t) is the vector from the point Ca to the point C. Rt the time t. In

a i
addition, suppose that vW  is the simple graph such tn3t if t > 0 then

a
VW a (C) = vW (t) 3

The vector r (t) maf be expressed as follows:

a

(t) = $) (sa(ti' 1P, Wt, t) q b t) (12)

F F Tat) + BGA a
a ab

+A , (at+t), (t), t) q b(t) + w (t) + V (t).A aC + A (s a(t)' t) + (G A (; ' G (t' G "
a a Aa a a aab

If the vector function rC is differentiated and it is assumed that

a
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the magnitude of the vector w (t) is independent of tme then
a

'(t) = B(t) +SB(t) x T (t) (13)rF a

a

+ V ) x (9A (t) + A ( t) ' t + W (t) + -W (t))
a a a a

+2 (t) x (9A (t) + 6A (sa(t), t) + a (t) + W (t))a a a a

&w (") x (wc (t) + -w t))
a a a

(sa(t) ,  ] (t), t) '(t) A ;s sa' t
+'IBGA a a a

ab

4 (Sa(t) , 
0 G (t), t) qG b'(t) + I3 vw '(t).

+ A a a a

ab

Since at the time t the vector Wc (t) is in the wheel midplane from
a

the point Aa to the point C a, it follows that wC may be expre&ed by a unit
a

vector times the w4gnitude of w as shown by
a

G x 3 x G
a2  a2

W C (kG I Ca

a2  a2

As previously defined, the unit vector kG (t) is parallel to the axle
a2

of the a gear wheel and I3 is perpendicular to the grcund.

Therefore from the equation for kG given in Appendix G it follows
a2

that
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b X G3  f e TB d
a2 ab c a a e

Wc = wc'

a D a

where

D b= 7 tb c YB 3 f G e y G)
a2  a b c a 2  af e

/ b c YB3 f e TB2) 2

+. (kJ G a G a c "B G a G a e/a2 ab c a2  af e

(I (G b aGc ' )2 )2 ]0.5

a2  a b  c

b
and if each of wC ; b = 1, 3 is a simple graph such that if t > 0, then

a

W c (t) = W C  bt)b

a a

at the time t.

Thus, if r ' is used for - in the virtual work equation for the' CF rCF

a a
b

ground force and if each of FG  is a simple graph such that if t > 0,

a

FG b(t) is the bth component of the a gear ground force such that at the

a

time t

G (t) = FG b(t) Ib'

a a

then after the indicated vector operations in equation (12) are performed,

the quasi-coordinate and generalized coordinate force terms for the ground

force are
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VB  NGvB G db
SG  f(t) = T " (t) 8 bd FG (t) (f 1 1, 3),

a=1 f a

B dNG
S (t) = (edh 9/B (t)iTad 3 f h FG b(t)3

c a= a a

edh X t)a G d(t) (g e + A e(s(t)) 3fh FG b(t)
f a a a a

e

+ efdb 'f(t) we d (t) FG b (t) + ef3b YBf(t) vW (t) FG b (t)) (c 1 3),
c a a c a a

SGa(t) = CL e(t) XBg(t) e (g h + ((t)) 8cd FG b(t) bg
ad e a a a

+ edeb (ZIG c d (G t ) wc ( t ) FG b ( t )

a3  c a a

+ ed3b CLG c  B( t ) 'B d(t) vw (t) FG b(t),
a3  c a a

SG a1, (taG e (t) T B e(t) w c d ( t ) FG b (t)
a2 a e a aP

+c3b 6G P(t) CL G e(t) TBc(t) v (t) FG b(t),
a2 ap e a a

qB' NG

s) Gae X(SA(t), G(t)) FG b(t) 8SG  ft I aT1 Bg (t) (t BO A GGb

c af

(f 1, NBE),

S a e( v/gt b A

SG (t) = G e (t) XB(t) 6 A'(Sa(t)) FG b(t) 0 bg'

a e a a
c

37



Ge(t) g(t) G Sa(t) G G bga e A a ac af

(f = 1, N GE
a

where b ranges from 1 to 2.

To derive the ground force normal to the ground plane the following

functions are needed:

Suppose that FG  is the simple graph such that if t > 0,
a

FG (x) is an ordinate of FG only if x is an ordinate of the simple graph
a a

v W  at the time t and FG 3(x) 13 is the normal force from the ground
a a

on the a gear tire if vW (t) is equal to x.
a

Now suppose that vW  is a number such that if x is a number greater
a0

- 3
than or equal to vW  then F (x) = 0. Therefore, if ua is a simple graph

a 0  a

such that the point (x, u a(x)) belongs to ua only if x is an ordinate of vW
a

and x is less than v w  and u (x) is the potential energy stored in the a
a 0

gear tire corresponding to x then

JvWa0 ~

ua x) :_ FGa dI,
a

or alternatively
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vW

a 
W a a
(3

u a[v W]((t) F G dI,
a

and since the generalized force associated with the coordinate vW  is
a

defined by

v W I

SG a (t) - Ua '(vw (t)),
a

it follows that

v W  a'

SG (t) - F 3 (vw (t)) - F .
a a a

The other two components of the ground force vector are derived in

Appendix E.

Suppose that VW is the velocity of the wind relative to the ground.

Further suppose that C. is a simple graph such that at the time t, aL(t) is
the angle of attack calculated from

('(t)- W 3 (t)

C/(t) = tan -1

W B1

Also, suppose that )6is a simple graph such that at the time t, 1(t)

is the side slip angle calculated from

/3(t) = tan
- 1

(F'(t) 9W) "B9
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Further suppose that each of S a and ( ) is the simple graph such

that if t > 0, Se (t) is the elevator rotation, a (t) is the aileron

rotation and (t) is the rudder rotation at the time t.

r

Now if F A is the vector function such that if (xBI , XB, XB3)

is in VB and t> 0, -A(xB1
, XB2, XB3 t) is the aerodynamic force per unit

Bre foFhApit (XB X XB

area for the point x B XB ) on the airframe surface at the time t,

then the virtual work done by the aerodynamic force over the surface of the

airframe SB is

WA(t) = %B FA(IxB1, 1XB 3, t) .IxB1, 1XB2, 1XB3, t) dSB .

Therefore, if q is a simple graph such that the time t, q(t) is the

dynamic pressure and if F is the air density then

(t)= 1/2 P IF'(t) - W

and if S is the reference area for the aerodynamic forces and if it is

assumed that the aerodynamic force is independent of the elastic deformation

of the airframe then there is a vector function A A such that

FA(xB, XB2, XB3 , t)

q SA A(X1 2 X3 'q SA( xB , x 1(t), (t) , 8e (t), I a (t), I r (t),

{LBI(t), \.LB2( ) B3(t), t).

For the rigid body equations of motion the aerodynamic forces and

moments are referenced to the point labeled P in the airframe. Therefore,

if 1 NP is the vector function such that if t > 0, iNP(t) is the vector from

40



the jig condition location of the reference point N to the

aerodynamic reference point P at the time t and if LpB is the vector
] 2 B3)

function such that if (xB , , X3 ) is in VB and t > 0,

1 2 3
PB(XB , xB , xB , t) is the vector from the jig condition location of the

point P to the jig condition location of the point labeled (xB , XB, XB

at the time t, it follows that

1x ) = I'p-t + B XB 2 3
B xB , KB ,xBi t 0 NP( L , ( K t).

This expression may be used to modify equation (5) which is then used

to replace R3 in the virtual work equation. When the vector operations

and integration are performed as indicated in the virtual work equation it

is seen that the coefficients of the velocity terms may be expressed as

VB

SA b(t) =F Pc(t) 8 bc (b 1, 3),

S b Q B(t) it + e F (t) i c (b 1, 3),
A bPbc bcd P NP

qB'

SA b(t) QAc (t) bc (b 1, NBE).

It is evident then that the aerodynamic force at the time t is

F(t) i (t) and the aerodynamic moment at the time t is i B(t) Mp b(t).

Further, it is seen that QA b(t) is the generalized force at the time t

corresponding to the bth airframe vibration mode.

suppose that each of CFb; b= 1, 3 is a simple surface (aerodynamic

force coefficient) such that the aerodynamic force component projection at
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the time t on i B(t) may be expressed by

FCb(t) =

q S CFb (CL(t), 1(t), Se(t), 8a(t), 8r(t), QB,(t), Q' B2(t), &- B3(0)

(b = 1, 3).

Also, suppose that each of C Mb; b -1, 3 is a simple surface (an

aerodynamic moment coefficient) and each of A b; b = 1, 3 is an aerodynamic

reference length such that the aerodynamic moment projection at the time t

on i B(t) may be expressed by

Mp(t) =

q S IAb CMb( M(t) , 13(t), 8e(t), Sa(t), 3r(t), QB1(t), QB2(t), 'QB3t)

(b = 1, 3).

Further suppose that each of CQ b; b = 1, NBE is a simple surface (an

aerodynamic generalized force coefficient) such that

QAb(t) =

q S C Qb C(t), /3(t), 5e(t), 8a(t), 5r(t), "2Blw B(t), P B3 W

(b = 1, NBE).

The virtual work on the airframe from the thrust of the engine is

assumed to be independent of the airframe deformation. That is, it is

assumed that if TL is a point on the thrust line of the engine(s) then the

airframe deformation in the direction of the thrust force is zero.
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Suppose that FT is the vector function such that if t > 0,

T (t) is the thrust force vector at the time t and the magnitude of F T(t)

is a number. The thrust force vector T(t) may be expressed in component

form as

~(t)- (t),

wit FT(t) B2(t) = 0.

Also suppose that 1T is the vector function such that if t > 0, i T(t)

is the vector from the jig condition location of the airframe reference

point N to the jig condition location of the point TL a the time t.

Therefore, if rTL is the vector function such that if t > 0, FTL(t) is the

vector from the ground reference point Q to the point TL at the time t, then

the virtual work done by the thrust force is

3W T(t) T F(t) • TL (t)"

The vector r TL(t) may be written in expanded form excluding the

deformation terms as

rTL(t) = F(t) + iT(t).

Thus,

TL'(t) = F'(t) + B (t) x T (t).

The vector TL'(t) may be used as a replacement for TL(t) in the

virtual work equation. It follows then that if in component form

T t) ITb i(t)
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the quasi-coordinate force contributions from the thrust force are

VB

ST b FTC bc(b 13)

T 2 T 2bc T

Now suppose that S is the vector function such that if t > 0,
a3

. S (t) is the unit vector at the time t which is parallel to the a gear
a3

shock strut axis of symmetry and directed downward with respect to the

piston as shown in Figure B-2 of Appendix B. Further, suppose that

F S is the vector function such that if t > 0, FS (t) is the shock strut
a a

force (see Appendix B for derivation of the shock strut force) at the time

t. Also, suppose that FS  is the simple graph such that
a

FS = F S 1S"

a a a3

Therefore, the selection of the a gear stroke, Sa, as a generalized

coordinate permits the virtual work from the shock strut force to be

expressed by

NG

SWst) F (t) Ss W.
a=1 a

Therefore, the contribution from the shock strut force to the

generalized force in the a gear equation of motion is

S t

a
Ss  t) FS t).

a
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The deformation of the airframe and the deformation of the landing

gears are assumed to be represented by normal vibration modes.

Consequently, the stiffness matrices for the airframe and landing gear

deformation equations of motion are diagonal. For simplicity, it is assumed

that the damping is viscous and the damping matrices for these equations are

diagonal. Based on these assumptions the following definitions are made.

b
Suppose that b is an integer in [1, NBE] and that the number KB is the

generalized stiffness corresponding to the bth airframe modal equation.

b
Further suppose that the number CB  is the generalized damping corresponding

to the bth airframe modal equation.

Therefore, the generalized force from the airframe modal stiffness and

damping for the bth mode is

qB!

SBF b(t) =- KB b qBc(t) 8bc - CBb qBc (t ) 8bc"

Also, suppose that c is a positive integer in [I, NGE 1, sC  is the
a a

fully compressed stroke of the a gear and KG  is a simple surface such
a C

that if x is in [0, sC ], y is in [-7T, 7T], KG  (x, y) is the generalized
a a

c

stiffness for the cth mode of the a gear corresponding to the a gear stroke

x and castor angle y. Further, suppose that CG  is a simple surface such
a

c

that if x is in [0, sC I, y is in [-7T, 7TT], CG (x, y) is the generalized
a a

c

damping for the cth mode of the a gear corresponding to the a gear stroke x

and castor angle y.
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The generalized force from the a gear modal stiffness and damping for

the cth mode is

a c(t) = - KG (sa (t), GG (t)) qa d(t) 8 cd

a a ac

-CG a (Sa (t) (t)) qa d '(t) cd"
a a a

c

As stated previously, it is usual for only the nose gear to be capable

of castoring. However, the final equations may be written more concisely if

all the gears are assumed to have this degree of freedom.

The gear castoring moment is, in general, a nonlinear function of the

castor angle function for the a gear, 0 G , and its derivative. The
a

specific functional form of this moment is usually configuration dependent.

Therefore, to simplify the current derivation it is assumed that M is a

simple surface such that if t > 0, MC(OG (t), 0 G (t)) is the generalized
a a

moment associated with the generalized coordinate OG at the time t.

a

Thus, the castoring generalized force may be written as

G
SGC a(t) - C( G (t),SQG (t))

a a
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The Constraint Condition

In the previous section the coordinate vW  was introduced when the
a

ground forces acting on the system were defined. As a consequence there is

a redundancy in the coordinates specifying the position of the system. This

re'undancy may be easily handled by use of a constraint condition and a

Lagrangian multiplier as illustrated in Appendix C.

The constraint condition may be stated as follows: If at time t the a

gear is on the ground then the component of the velocity rC '(t), from

equation (13), normal to the ground is zero. Therefore, a

C '(t) 3 = 0.

a

As seen from equation (13) this constraint condition has the form of

equation (C-13) in Appendix C. Consequently, as seen from equation (C-14)

the constraint function may be written in the following form:

a[BI VB2 VB' B B' B' 'G'
a

I, NBE 1 NGE

a '''' qB ' qG ' ' qG a,a a

&Ga NBE 1 NGEa

I ' a' qB 1 ' qG 'qG Na vW '= 0.
aa a a

After the indicated vector operations have been performed, the terms to

be used on the right side of equation (C-16) are
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Fa;V f = f
a;V B Wf

'v3 B3 Td cfhF a;Q'B C = e cdh Bf 1Ta

+ edh TB 3 (L G (gA + 6A C(S) O

f a a ac

fW d
+ efd3  c c WaI

e e3h A a ] ) h d
F a;aG G ad  e a a

c 'Vd e+ed L -B 0 wC+ ede .D G ac B w a
3

Fa ecd3 / G a( G 'B Wc a
;a-aG e e
a p

F
Fa;qsf C E a]']

a a e Aa
c

e ?YB: 3Fa;sa ' a e A,

C

F f a[S, 7G
aa;qG G a e GA aa'  a
c af

an,

F =1.0.
a;v W f

a
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Equations of Motion

All of the input terms , the equations of motion (equation (C-16) of

kppendix C) have now been derived. The definitions

VB  VB  VB  VB  VB  VB
S b S SW b + S H b + S G b + S A b + S T b (b 1 , 3),

&IB B B I B rl B R B I

S b S W b + SH b + SG b + SA b + ST b (b 1, 3),

S S SW  + S G  + S GC
SS G

S S G3 
+ S 

3

a a a a
S = S W  + S G  + S S  ,

qB' qB' qB'I qB' qB' q B

S b S SW b + S H b + S G b + S A b + S BF b (b 1 , N BE),

q G I q G q G I q G I

S b S W b + S G b + S GF b (b 1, N GE )
a

permit the equations of motion to be expressed in the following form:

vW :

0 =S G  a + Fa a a;v a

a

S 2 VB  NG(K; K 2 + K 3 S + Fa .a P ;V B ;V a a;V

aa=1
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VB  NG

(K .2)' + BK KK;V 31 S 2+ a Fa;V
B B; B a=l B

VB N G

(K;VB 3 ) B 2"B K ;VB +1 K I 2 = 3 + a,. a; 3.

B B B a=l ' B

(K;B1)' - VB3 K;VB 2 + VB2 K;VB3 'B K;-f2B2 + n
2 K ;,Q B3

g2 B N
S i+ XaFa I

a=l ;SqB

(K 2)' + V B3 K ;VB - VB1 K;VB3 + QB 3 K, -B K;,B3

2-B NG

s 2 +  aF; QB2.
a=1

(K ;B3)' - VB2 K ;VB 1 + VB K;VB2 n K; 1 +,Q B K ;,B 2

nB NG
S 3 + I xa F;;Q3.

a=1

(K S a + a "G (a = 1, NG).

a a a

(K )' : a (a 1 1, NG).

a
s
a

(K;s a)' -K;s a  S + , F (a = , NG).

a a a



B' NG

(K ;qb,)' 
-K q b = S b + ' ka F;q b, (b %,NBE).

qG b + X 
N

(K qG b,)' - K qG b = S b a Fa;qG b, (a 1 1, NG and b = 1, N GE a
a a a

These equations may be rewritten by use of the expanded expression for

the kinetic energy and the generalized and quasi-coordinate forces.

The first equation of motion above permits the calculation of the

Lagrangian multiplier a" Since

F , 1.0a;v W  .

a

and

S a 
3S G  F - G

a

then

ka = FG 3a

Thus, the Lagrangian multiplier a is seen to be the component of the

force on the a gear tire from the ground that is normal to the ground.
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The VB equation is

BVB VB B

(M 1 B ) vBi + (M B1 e)Sa' VG a 1, NGS B" (14)
a

NG vB NB NG vB f B

+ M I (m ;s a B + X (H 1 ca iG B

a=l a a=1 Ga a

NG vB EG NG vB fG
+ " (M a' OG ]QG 1 ;S a G

a=1 a a a=l a a

N G V B G aG

+ 7 (Ml Ga 0  .Q0 )2
a~l G aa

N sN O  VB
NG VB sa aG Ba2

+ I (M 1 )[a OG Sa + (M Sa'

a=l a a=l a

NG V B S a V B q B!
NG  V

+ 7- (M 1 ) ; '' f? 0  Sa' + (M 1 c )G ; a 1, N0] q B

a=1 C; G a a
a

NG VB qB NG VB qB
+ I (M e ) ; Sa'I q Be +  (M I e )  G qaGl ;a al G a a

N G V B qG aO N G V B q G+Y (M 1 a qGa + (m c 'a qGc

a:1 a a a:1 a a
aaN G N V

a~l C a a 1aa
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3 ((M B B B 2 BQ c- (M2 2 c)[Sa' 1 , NG]*'- BB 1 1 B 2 CM a 0G Ba

N v 2G

+ y (M a)[ a GG

a=1 (MSa a + M2G ~a

a:l a a

NG VB Sa VB qB+9 (m )[ + (M c)Is a OG a = 1, N G] q B O

2 a a a 2 c aa=1 a a

N G v B q G
+ 7' (M2 a )[s a ) , ]G q G c,)

2 (VB VB VB 'B 1

3 c a'

+12(( ) VB3 + (M 3 ) [ a  G ;a=ING] BC

a

NG V B PG

+ (M a )
al Ga a

NG VB Sa VB qB
+a (M 3 )[sa Sa' + (M 3 c)[S p 0 G a 1, NG] qBc

a~l a a

NG VB qG

+ 2 (M 3 ac)[S a- G I qG C )
a=1 a a

NV b d VB V

a=l a 1 1 1 P+ F b  lb

SH (B 3 bd) + FTb lb*
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2

The VB  equation is

"BVB 2, VMB B

(M B I ) VB21 + (M 2 c)[Sa, OG ; a 1, N] B (15
a

NG vB f B NG v B B

+ C M 2 c );sat fa' B c+ I (M 2 c ;OGaf ~Ga Ba= I a a=lI
a

NG vB f G G vB Ga t G ] ' + (M 2+ M2 a' a G'
a=l a a a=l 'a a

NG VB nG
+ 7 (M 2 a ( G

a=1 G aa

NG  VB sa  NG  VB sa
+ ( 2 )[Sat G 1 Sa ;s

az1 a a=1 a

NG VB Sa VB qB
+ Y (M 2 G Sa + M 2 Sa' G ; a = 1, NG] qC11

a=1 2 ;'G a a
a

NG VB qB NG VB qB
+ CM S ' + q M 2 Ga: c ;s Sat aB 2 c SG B

a

NG vB qG NG VB qG

( M a~ )[a a c,
+ 2 c)[Sa) G I qG c,, + I (M 2 ) ;s a qG
azl a a a=1 a a

NG VB qG

+ y (M 2 a ; qG c
a=l G a a

a
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VBVB VB B

B ((M 1 ) V + (M I 1 )[S 0 ; a : 1, NO ] ) B
a

NG VB a2G
+ Y (M 1 a)(sat 5 G ] S' (a

a=1 a a

NG VB Sa VB qB
+ (M 1 a )[s + CM Sa a [Na

a=1 a a

NG VB qG+7 (m 1a d[Sap O ] q Gc,)

a=l a a

VB VB VB B

B ((M 1 1) VB + (M 3 G )Sa' O G  a 1, NG I B

NG VB a G
+ I (M 3 [Sa' 6 C)a=1 a a

NG VB Sa VB qB+ fm )Sa O 3 'a + (M 3 c)[sa (9 ; a = N NG] q B c
a=l 3 [ a a

NG V B q G+ 7. (M 3 a c [Sp GaIqG
a=l 3 )[ a ]qa '

N G  bV
B  VB 3b

. b ( bd ) + g (M +) YB F

a:1 G a B2 b1 1 2b

H bHb ( Bd 6 bd) "

2
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The VB3 equation is

VBB VB B ) c, 1,6)

(M I I ) VB3' + (M 3 )[a' G ; a = 1, NG] B(
a

N v B B c G vBB+ (M3 o(M~a
3 (M c;)S sa B + 7 3 cK0O nG B

a=1 a  a=1 a

G vB 91G NG vB QG
+ (a ) I (M aa G

+ OG 3 Qa G G 3 a G
a=1 a a a=1 a a

NG VB QG 
)2

+ 2" (M a (g2G)
a=1 ;G aa

NG VsNG Vs

NG  VB sa  a+ (m )Is I (M ) (Sa'
3 a G a 3 ;s a

a=1 a a=1 a

NG  VB sa VB qB

+ (M G $a' + (M 3 )[s & ; a :1, N] q c "

3 G a 3Mc a' G G Ba:1 3 ;G a a
a

NG VB qB NG VB qB(m . I. q) =' % + (m q) '
a 3 ;s a B 3 c G aa1a a=1 G a  a

NG VB qG NG VB qG

+)ISa q ) ' q

(M c ' OG G3 c ;s a G
a=1 a a a=1 a a

NG VB G

+ (M 3 c) G q
a=1 9 G a a

a
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VBVB B fIB

B2  ((M 1 1)vB + (M 1 d)Sa' G ; a = 1, NG] BB

a

NG VB -G

a.(M 1 )(Sal C-G ] Q G

a=1 a a

NG VB Sa VB qB
+ CM )(S (M 1 s a =1, N0] q~Of

1. ( I )[a' G ]  Sal + I GG B
a=1 a a

NG VB qG

+ I (M 1 a c)[sa' 0 I qG,
a=1 a a

VB V B v BB

+ (M 1 1 +(M 2 c; a = G B
a

NG VB S7 G

+ I (M 2 a(Sal
a=1 a a

NG VB Sa VB qB
+ CM )[s G S + (M )s a 1, N q

a1 2 a G a + M2 c a' OQG =1 NG Ba=1 a a

NG VB qG

+ I (M 2 a)[Sa I]q c')
a=1 2 c)[a' aG ] G a

N F G 8 bd) C 1 XB + F 3b

+Fb ( TB d bd ) + F b b 8 3b'

357
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The 2 1 equation is

fB B G QB B
(M c )[s a G ; a = 1, NG] 2B  + Y (M 1 ;s B 1a

a a=l a

NG 2BQB vB 2B

+ (m -B G + (M b 1)Sa' G; a = 1, NG] VBb '

a~l 'i-'G a a
a

NG VB -2B NG VB -2Bb
Bb VBb + (M b 1)  G VB

a=1 a a:1 a
a

NG OBRG NG B &G
+ Z (M 1 a)Isa' OG G + 2 (M 1 a) Sa G

a=l a a a=l a a

NG IB G NG QB w

+ (M 1 a) ( G+ a 2 (M Is
a~1 ;G Ga 2  a~l a a

a

NG Q BW NG Q B s W

+ I (m 1 )[ ~a' G]Wa" + 7-1 (M 1 a( ')2G W
aa a) a a-

NG B a B 2 B

aB

NG B B N G 2 Ba
+ 1 (M 1 )[;s aI B ] S + 5 " (M 1 c G qC

a=1 a a=1 a
a

N G NG q

+ 1 (m 1 c a' Gq G + 1 (M c)  ;s a qa c

a=l ;Sa a a a=l a a

N G B %G
+ 7 (m 1 aCO c 2G Gq

a
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-vB((M 2 eSa' OG G  B
a

NG vBQG NG VB Sa

+ Y (M 2 OG G M 2a
a=1 a a a=1 a

VB qB NG VB qG
++ C a a q q

2a 1 a, NG] BM 2 c[a' G G
a a:1 a a

VB 'B
+ VB2 ((M 3 BQB)Is a 6) a = 1, N Iq~

N G VB Q' G aN G vB S a+aM)s ] + (M )s a

+ M3 a' GG G +X 3 a' OG ]a
a:l a a a:l a

vB qB NG vB qG

+ M )sa' ; a = 1, N G q Be + y (M3 c) a' ] q G c,)(M3c[S' a  a:l 3 )S' a a

-B 3 ((M 2 c )[S a' OG ;a 1 , N G] Q Be
a

V B nBb
+ Mb 2)S ; a G IN G ] Bb

a

+ (a2)[S a' G  G + Y- (M 2a)Isa' OG ] 2W
a:l a a al a a

a G n BC [ Q C ;a 0N qqC

(M 2 )S a' 00G ] sa 1, N G2 q0

a=1 a a

NG £2 B q G

+ Z (M 2 a c) ap + q G

a:1 a a
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+2 &1B &IB;a1,N+. ((M )Sa BG ; a 1, , NG]N G-B c

B 3 a

B M b B3 ) [S ' 0 G ; a : I, NG.] VBb

a

N G B -G NG Q B Q W

+ ( (M A)[ S o + I (M )[
a=1 3 a a a=1 , Ga a

NG B s aB Ba

+ (M )s' + (M a)[Sa,0 Ga a 1 1, NG] q c+ M3 )a' OG ] Sa 3 ca GGB

a=1 a a

NG Q B qG

+ I (M 3 a)[ a' G

a=1 a a

G b T d brfh

a. FGa (eldh ra bga=1 af a

* h Bg (-G d (gA e + A e  fh
+ eldh f a a a

e

e+fdb YBwc+e f3 b  B
I a 1 a

* g (M B B)[a G ; a 1, NG 'B3 cd

' a ' Bd

* FHb (eldh WBg iHd 8bg f h

(y aQh Xp
* (WB 1I H 3 Hh pg esd r

f, d X, r B dIp ~ b

X aH Hf (a, B + b B 3 b) + F d el 1N + b
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The fB 2 equation is

fBEB N G B f2B
(M )CS a 1, N ] B C CM ) s' (18)2 ca G G B 2 c ;s B aa a~l

NG B 9B VB 2 B

aI (M 2 c);G CM b 2)la ' LGa; a = 1 N ] V b
a~l1G a aa

N G B B NG B n GB

+ b (m 2 ) [s a VBb gM b 2) ;a - VBb '

N G fB f G a2NG 9B 2
+ I Cm 2 Qa a' + M 2 )s a G G

a=l a a a=1 a a

aNG B G NG B W a

.(M a 2 G' E( a) s

a 1 2 )[Sa OG a + (M 2 ;sa

ala a~l aa

N G IB s a &I ~B W

+~ 7 (Ms

a=l ;OG a= aa

Nc G QB qw N G BqW

+ (M 2 a) ;s a I a B X (M 2 c n G q B w
; a a l a a a

a

NG n B Sa N GB 2

+ (M 2 )s a G Sa" + (M 2 ) ;s Sa

a=l 2 a G a  a 1 a;laa

NG 'B Sa B B

+ ( CM 2 OaGa; a 1, NG]

al a a

a

G B B6+ ( M o) s ,q c C
2:1c2 ;sa a B' + a:1 C"  M 2 c) ; G 2 Oa qB

a
NG fB G NG q

*+ C M a &[a ] qG C,, + . ( a C Ga=1 2 c G2 c ) sS a
a1a a a=1 a a

NG ' Bq

C M a ( Z q e

2 c);G OG

a
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+ VB3 ((M 1 c)Isa' ; a 1 1, N GI Bc

NG VB f G NG VB Sa
+ m a I]1 )[s a, 3 IZG + Z (M 1 Sa a

a=1 a a a=1 a

VB qB NG VB qG

+ (M )s ; a = 1, NG] q + 7 (M 1 c)Is' qC
1 c 5a G aG B aa a a a

1 VBB C'

-VB ((M )[ G ; a = 1, NG I B
B3 c a' G aG B

NG VB &I-G NG VB Sa
+ CM 3 a)[Sa' CG ] G +3 G M [a,

a=l a a a=1 a

VB qB NG VB qG

+ ; a = 1, NG] qB + s (M a [ ] q7 C
3 c )[Sa a cOa' G a  a

B ((M 1 c )Is' &G ; a 1, NG] 'Bca

VB Bb

(M b 1)[Sa' tG ; a = 1, NG] VBb

a

G G f4 BUG N G rBlw
(M 1 a ' G G + a' PG W

a=1 a a a=1 a a

NG B Sa S' B qB
+X (M 1 )[S1a' G Sa' + (M 1 c)[Sa, G ; a = B, NG] qB

a=1 a a

NG 'QB qG

+ Y (M 1 c a ? 5 G ]
?=l a
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-, ( B 
'aB ((M 3 a' [s a 1, N ]G Ba

VB f'B

+ (M b 3 )CSa ,  G ; a :1, NGj VBb

a

N G ~B nG aNG Bf
(M a [sa G G + (M 3 G W

a=l a a a= I a a

a=1 3 a a

NG O B q G

a'a )[S q

NG

++ efM ) sa

3 c a 2 Ga; a a

+ b g dF~ Ga( 2dii Ta T

+e2dh TBf iG d Ug e + pA e FTC bg fh
f a a a

e

db 2 a 2 a)
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B equation is

IB ]B N G B BB B

(M 3 c) a' G; a =N 3 c ;s a' vG B G ( a
a a=l a

G B B B B b
+ay (m 3 c);G c BCG + (M b 3)[sa' OGa; a = 1, NG] VB

a~ 1l a a
a

G B B b, G B B
+a (M b 3) ;sa S a IVB + (m b 3)  G VB

a=l a=1 ; G a
a

NG QB BG NG OB &G
+ I (M a)[ OG ] -2G '+ E (M a) Sa -G

a=1 a a a=l ;sa a

N G (M a) )2 G B W+ I ( 3 G@ +f~ Y, (m 3 s )[ a' G W
S+ aa a M a ' Ga

a

NG B Qw NG B QW

+ (M a) S at W + 2 (M a G IW

a=1 3 ;a a a=1 3 ; G a a

NG 2 B Sa NG B S a

+ Y (M )[s a ] Sa" + 7 (M 2) (sa

a:l 3 a a a:I 3 ; a

NG B Sa &B qB

+ ;& (M a I + (M c) 0a G ; a 1, NG] qBc,~a:13l a a a
aa

N G B N G QBq
+ M3c;s' +a q CM +.L Q q C,
+~C ~a;saB c G B

azl a a~l ;O a
a

NG N0B qBG N G B q

+ .3 (M c s a ' q+3 ;s

azl a a azl a a

N0  Q B (I
+ I (M a c

a:13 ;s a C

a= a
a
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2 B 'B

VB2  ((M 
N c)[Sat OG a = V, NsG] B

NG VBG N G VB Sa, @I n T_.)Ea I s'
+ I (M 1 a G + (M 1 )[S ' a'

azl a a a=1 a

VB qB NG VB qG

1 c[a, ; a ', 6G q c e z (M 1 ca G

a a:1 a a
1 VBQ 'B

+ VB I  ((M 2 )IS 1 G ; a = 1, N G p c

a

G B G NG Ba

+ I (M 2 )sG G +2

azI a a a=I a

VB qB NG VB qG

+ (M a 1, N ] qC + (m a qc,)
2 c)[S a' 6 B a a

a azl a a

2 BB
B ((M c )[Sa' G a = I G ]  Bc

- ((M P' I a 1, N G B
S 1

a

NG B G NG BQW

+ 7(M b )[S + I aM )I I, 0 V b

a'G G W

+ 7 (M ) G a' G W
a=1 a a a=1 a a

NG 2B a -B B
(M- a G a' + (M )[S a a : 1, NG] q~ci

+ I (M a )[Sa' 0 G I q G

a=1 a a
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1 QB 
,"lB

"~ IB ((M 2 ) = I, NG] QBC
a

VB B- b

+ (M b 2 )ISa' G ; a = 1. NG] VB
a

N G B & G aNG B 91Wa
+a (M 2 )S a G ] LG + 7 (M 2 [Sa' W

a:1 a a a:1 a a

NG B 0a " B qB
+ 7 (M 2 )Isa' G Sa + 2 c Ga' OG a 1, NGI q

a=l a a

N G  i B q G

+ " ( M 2 a 0 [ G qG
a=l a aN G

FG b (e 3 dh yBg iTad b 3fh

a=l a f a

eg Bf d e + e[]) 3 fh
" e3 ah Bf Ga a a bg

e

+ efdb 'Bf w d + ef 3 b YB va

3 a 3 a

V B 9- BX3 
c+ g (M c 3 ) [ s a ' ; a = 1, NG] B d

ad

H FHb (e3dh YB 1Hd 8bg 8 f h

+ B 9OL h 'YH ) e
3 3 h pg sdr

X][H3 (a r B + b1 T3) s) Fd e 1NC + M b 3
3 f 1 3 c P P 3
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C
The qB equation is

q B q B V B q B

(M b c)[sa, G ; a 1, NG] qBbi + (M b B)[s a' G ;a I, NG vBb '  (20)
a a

fB qB Na G Q oGq
+ (M b )[s 0at G ; a 1 , N G B b , + (M a )[sa 0a G G

a a=1 a a

NG sqB NG qB qG

NG qB B NG VBq

+ y (m y~~'c ~ C a b"
I ( b c )Is a I b '  sa +  . (M b c ) [' Gb 'a:1 a a1; a a

NG qB b N B qB b+a (m b c;s a B a + a m b ) VB saal aS a

N G G GB
+a (M c ;s a ;saqG sa=l a a=1 a a

l aa a

N G q B q B bN G VB q B
+ M (M b ) q B' G + (M c bG+aCM aaa~l '0a a a=l b

N 0  B q NG V a qB
+ Z (M b c)9 f2B b G + .7 (CM a ); ( 2G

a=l ; Ga a a=1 G a
a a

N~~~ to N r
NG SaBB G GG

a b a= MG a aaa a
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The s equation isa

5 a~a VB 5

(M )[sa] sa" + (M b )[sa' 0G VBb, (21)
a

f B s G a

bb(M b )[a, G ] B + (M )[s a I a

a a

SaqIBSaqG 
b

+ 1/2( M b ) ;s ( a ) 2 + (M b [ B G G
a aa

B a aB aG

+ (M ) B + (M b OG qb fGa + CM
( b ); } B 'Ga ' Ga a~0 a0

a a a

- 1/2 (M b c a ) B -B 1/2 (M a a)sa )

- / Mq B qb, q l 1/2 (MqGaq a q bf q cIC ;S a aSB f B b (G

-( Mb ) ' qC '  b a c 3 b B G

4 BB ;a a

n 8 n G b ,B q b C

(m b ;3 a B n G- (M b ;s B q B

a)a

(');b aa v~b~ - M b ;s V b Ga

'aB qa V B a b

(m)q (m q(M b c) V-b q C a (M b Vbb

S( ;sa  B G a b ;sa a
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G Gab qBqGa) bf
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a a
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The qG equation isa

G abG aVB bG
M G a b a V b

+(M ab d~a '9 G B + (M c (23) O Jsa

b Gc)[sa' 6G a q + (M b c)Saa a a

b ac G ]a b, + (M a B a

+ B( qGM b B q )a G a b a

a a

a Is , @ ]qb M a a) b,
+ (M b G aG 'Q G + ( M b c ;s G Sa
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VB bG (Q eqGsVBqGa.
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SaqG VB q
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The G equation is
a

Q QG V B IQG
(M a a)Csa I-2G + (M b a)I's G a VBb (24)

a a
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& G S a ' G qB
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92G qG QG QG
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QGc qc G b B IQB
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qB qB q qG
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( M b ) ; G a q ' - (M b q ;6G qB

bb 7a

-(M b B; ~ a' C b C;OG ~BqC

BqG a a
Saq

-CM b ab c, ~aqbc nO B qG -(CM b) ;O a " B
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(M a' - CM a b c,
bM a ) G ' S b c);& qB'q
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Initial Conditions

The aircraft is assumed to be oriented at t = 0 such that one point of

the aircraft has just made contact with the ground surface. The candidate

points for contact are the landing gear tires and the arresting hook. There

are some cases when there are multiple points of simultaneous contact at the

time t = 0.

The transformation T Bb(0); b 1 1, 3 and c = 1, 3 may be established

from the Euler angles 4(0), 0(0) and 4 (0) which are the initial yaw,

pitch and roll angles of the airframe. Appendix G defines the elements of

this transformation.

The rigid body translational velocity of the airframe reference point N

at t = 0 is

-'0 VBC (Q) B () : b'(0 ) b :d'(0) I + s'(0) I2 + v'(O) I3
c

Normally, the horizontal velocity, the vertical velocity or sinking

velocity and the lateral velocity of the point N with respect to the ground

surface (i.e. 2,'(0) I' 2 2 and 1'(0) 3) are specified at t = 0.

Therefore, the body axis components of the initial velocity are

VBe (0) Z b')(0 ) 
2 B d(0) 8 bf d

Also, when the initial angular velocity is not zero, the components of
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the initial angular velocity may be expressed in terms of the initial Euler

angle rates as follows:

B 1( 0 ) = '(0) - sin(O(0)) 4"(0)

B2 2(0) = cos((0)) 0'(0) + cos(O(0)) sin(+(O)) i'(0).

B 3(O) = - sin(+)(0)) '(o) + Cos(O(0)) cos(4)(0)) *'(0).

The following bth airframe modal displacement for b in [I, NBE] at

t = 0 is derived from equation (20). It is assumed that there may be cases

where the initial castor angle is not zero. It is further assumed that the

functions that are dependent on the stroke of the landing gears can be

evaluated with the initial stroke equal to zero then

b 1 "I "B B QB

qBb( ( (M ,c b) 0' 0 (0); d = 1, NG) YB 3 8ce + QAbl.
B b d e

The initial position of the point N with respect to the ground

reference point Q is defined as follows:

1I(0) = d(0) = (0) -1.

2 (0) =(0) =(O) -2"

3(0) = v(0) = F(0) -13 '

The number d(0) is normally zero, the number s(0) is used to orient the

point N laterally with respect to the point S (see Appendix F) and the
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number v(O) may be derived from equation (12) for the case where the a gear

tire has just contacted the ground surface. It is found from equation (12)

that

v(0) =-
1T b W.1(0) - BG C(0 ' 0 G (0)) ^y d Y 'B(C) q b (0)a b Aa a d

ab c

-Ab Cc(0) T B : (0)
- A C(Q 'B

a ab c

- G c( 0 , 0 (0)) d d ) 3(0) q b(0) - w C3(0) - vwG GD AB G Vab c a

The equation for v(O) may be obtained a- follows for the case where at

t = 0 the arresting hook j,' Just n.dae cont4ct with the ground surface:

v(0) I lHb T 'B(0)(1HV sin( H0 ) B 3(0) + I HV cos(4H ) ?13(0)

The a gear stroke at t = 0 is determined fror the following equation

which is derived from equation (21) and the equation for the number FS (0)
a

from .ppendix B:

1

Sa(0) - (- PA (s a()) AA
BG a a
a

B QB
(0, (0; d = 1, NG B 0 Bc112 b c ;sa) G C(O)

(M b B ) ; a(0, )Gd (0); d = 1, NG ) V b(0 ), B( 0 )b c ;s a G

a d
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The hydraulic fluid expansion in the a gear fluid chamber and the a

gear snubber chamber may ta obtained at t = 0 from Appendix B as follows:

PA (sa(0)) VH (0)

a() - KH a

PA(s a (0)) VH s (0)

a Ka

The following a gear bth modal displacement for b in [1, NGE ] at t = 0
a

is deriled from equation (23):

qG b (0) K 1 (g ( G a )(0 , G a (0)) - (0) c-)
a G ab a d
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Summary of Vector Function Relations

1B  Cc c

.- ),b
a a b

c c

- ^ eA G e cg
JG  = G G be

a b a ag c

JG - GG dB
a b a C d

b-
kG B G sG

a a b
ac c b

bcs]

a abc

[Wa =ye~ [c be cg

ab  ag

i H = "H b Tb
C C

C-Hd d c

, = VBb 7

b
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B LB b B b

b .
T a T a Eb

b

H H B b

T T bIB b

a Ga b G
a b
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-a ~a G ab

b ~

a 3G

a b

a a
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a b ab  c

b b
TBH : H c !B

b b

7 B B b

b JG

a b a b ac
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a b ab  c

b b

F H F HIb

H H b

FG F G b
a a

Fp P FpBb

p b -

b
= ib

FT F T Bb

80



SIMPLIFICATION OF EQUATIONS

The equations of motion (equations (14) through (24)) in combination

with the equations developed in the Appendices provide considerable

flxibility for calcul~ting the loads associated with landin& impact. A

minimum of assumptions were made during the course of the development of

these equations to help ensure this flexibility. In many cases, however,

the equations may be simplified by virtue of the gear design. For example,

for the case where the nose gear power steering unit is engaged and is able

to maintain the castor angle at zero, then considerable simplification may

be realized.

There are several simplifications that may he made to the equations of

motion if tl: ,7ars are not articulated (i.e. there is a one to one

correlation of the shock strut stroke and axle motion). These

simplifications are readily determined from an amination of the equations

of motion.

There are other simplificationz that may be realized. For example, it

is usually permissible to assume that the hirframe vibration modal effective

masses are independent of the shock strut stroke. Therefore, when this

approximation is used in conjunction wtth airframe normal modes that are

orthogonal to the rigid body motion, the complexity of the equations of

mo~on is reduced.

Further, it may be possible to delete other terms by computing the mass
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terms in Appendix D ant estimating the contribution of the terms involving

these masses with approximations of the multiplying functions which are

found in the equations of motion.
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APPENDIX A

MATHEMATICAL NOTATION

In the text of the report there is frequent use of the terms simple

graph and simple surface. This is done to emphasize their functional and

geometrical significance.

The statement that "f is a simple graph" means that f is a point set no

two members of which have the same abscissa. The number f(x) is the

ordinate of that point of the simple graph f whose abscissa is x.

The statement that "T is a transformation" means that T is a collection

of one or more ordered pairs no two of which have the same first term.

The statement that "F is a simple surface" means that F is a

transformation from a point set to a number set. If the point P = (x, y)

and the number z constitute a point of F then z = F(x, y).

The use of the bracket product notation has been used extensively in

this report. The following definition of a bracket product may be used to

illustrate the essential features of this important functional description.

The statement that "the simple graph F[gl, g2] is the bracket product

of F of g1 and g2 (F is a simple surface and each of g1 and g2 is a simple

graph)" means that there is a number x such that (g1(x), g2(x)) is in the

x,y projection of F and if x is such a number,

F[g 1, g2](x) = F(g1(x), g2(x)).
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An extremely useful concept in the handling of functions and their

derivatives is the identity graph. This graph contains the point (0,0) and

has slope equal to one. Consequently the statement that I is the identity

graph means that if x is a number then I(x) = x. The identity graph I

appears in the text with a subscript to provide clarity when used in

combination with simple surfaces.

With the help of the identity graph the definition of the derivative of

a simple surface may be stated as follows: The statement that F I is the

1-derivative of the simple surface F means that F ' is the simple surface to

which the point ((x, y), z) belongs only if

z = {F[I, y]1'(x).

In addition the statement that F 2 ' is the 2-derivative of the simple surface

F means that F 2 ' is the simple surface to which ((x, y), z) belongs only if

z = {F[x, I]}'(y).

These definitions lead to the notation used in the text of the report

for partial derivatives. To illustrate this suppose that each of f, g1, and

92 is a simple graph and F is a simple surface such that

f = F[g 1, g2]
.

The statement that F;g is the partial derivative of F with respect to g1

means that

F 1= F 1g g2].

Further, the statement that F is the partial derivative of F with respect

to g2 means that

F; 2 = F2 ' gI , g21.
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The identity graph is also useful in the integration process. In the

general case f is a simple graph bounded on the interval (a, b] and the

simple graph g is nondecreasing on [a,b] then f is g integrable on [a,b]

(Reference (3)). This is denoted by

Jb f dg.

In the special case where g = I (the identity graph) this integral

(i.e. the integral of f with respect to I) is the well known Reimann

integral.

Vectors are denoted by a bar over the symbol. When the vector is

expressible in terms of a unit vector set, for example, a ; a = 1, 3 such

that if F is such a vector and

F Fa I (sum on a is implied),a

then each of Fa; a = 1, 3 is referred to as a component of the vector F.

Frequent use is made of the "e system" for representing vector

operations. This system is discussed in detail in Reference (4). The e

system may be defined in the following manner:

If each of r, s and t is an integer in the interval 11, 31 then ers t is -1,

0 or +1 according to the formula

e rst = 1/2 (r - s) (s - t) (t - r),

and

rst
e e erst.
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It is seen that erst is skew-symmetric in each pair of its indices.

The e system is used in the main body of the report to express vector

cross products in terms of vector components. For example, if

ASi
s

and

B t Bto

then

s  t
x r erst

The Kronecker deltas used in the text are defined as follows:

abc abc

rst = erst 
e

rs rsc

r rb"

Also,

8 a ab = 1 if a is equal to b and

8 b a = 0 if a is unequal to b.
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APPENDIX B

DERIVATION OF THE SHOCK STRUT FORCE EQUATIONS

The following shock strut characteristics are assumed for the

derivation of the equations for the shock strut pressure and force functions

in terms of the quasi-coordinate velocity component functions of the

airframe and the generalized coordinate displacement functions for the

landing gear:

(1) The shock strut contains a hydraulic fluid and a gas.

(2) During shock strut compression energy is stored in the gas.

(3) During shock strut compression and extension energy is dissipated

in the hydraulic fluid and the coulomb friction forces from the shock strut

bearings.

(4) The shock strut is equipped with an orifice for control of the

hydraulic fluid flow during compression and the area of the orifice is

assumed to be dependent only on the stroke of the shock strut.

(5) The shock strut is equipped with a snubbing chamber (see Figure

B-i) for energy dissipation during extension of the shock strut and the

orifice area of the snubbing chamber is controlled by a pressure relief

valve.

(6) The shock strut has a single stage air chamber.

(7) The hydraulic fluid is compressible and the bulk modulus of the

hydraulic fluid is assumed to be a number.

To provide some additional flexibility for modeling potential shock

strut configurations, two shock strut geometries that have the
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characteristics described above will be included in the derivation.

The terms used in the shock strut force derivation are defined below.

Figures B-I and B-3 may be referred to for illustration of the geometrical

quantities. The required numbers are defined as follows:

PAMB is the ambient pressure.

AH  is the hydraulic area of the a gear fluid chamber.
a

AA is the net area exposed to the gas pressure in the a gear.
a

A0  is the area of the hole in the main orifice plate in the a gear.
a

A H is the hydraulic area of the gear snubbing chamber in the a gear.
H

a

KH is the bulk modulus of the hydraulic fluid.

PH is the mass density of the hydraulic fluid.

V A is the gas volume in the a gear gas chamber with the shock strut fully

a
extended.

V H is the volume in the a gear fluid chamber with the with the shock strut

a
fully extended.
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KBG is the spring rate of the a gear piston-cylinder interface when the
a

strut is fully extended.

CBG is the damping rate (assumed viscous) of the a gear piston-cylinder
a

interface when the strut is fully extended.

VFL is the fluid volume in the a gear shock strut.
a

CD  is the main orifice coefficient for the a gear.
a

C D is the snubbing chamber orifice coefficient for the a gear.

a

MW is the mass of the rotating parts on the a gear axle.
a

sC is the stroke of the a gear when fully compressed.
a

FBU is the upper shock strut bearing friction coefficient.

4BL is the lower shock strut bearing friction coefficient.

The vector functions needed to define the shock strut force are defined

as follows:

IS is the unit vector function such that if t > 0, 1S (t) is the
a3  a3

unit vector which at the time t is parallel to the shock strut axis of

symmetry and directed downward with respect to the piston as shown in Figure
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B-2.

FS is the vector function such that if t > 0, FS (t) is the -hock

a a

strut force on the a gear piston at the time t.

FS  is the simple graph such that if t > 0,
a

FS (t) = FS (t) 3 (t) at the time t.
a a a3

v H is the vector function such that if t > 0, vH (t) is the velocity of the

a a
hydraulic fluid passing through the a gear orifice at the time t.

vH is the simple graph such that if t > 0,
a

(t) v H 1t S (t) at the time t.
a a a3

v is the vector function such that if t > 0, vHs (t)

a a
is the velocity of the hydraulic fluid passing through the a gear snubbing

orifice at the time t.

v is the simple graph such that if t > 0,

a

(t) - y (t) iS (t) at the time t.
Ha Ha a3

F F is the vector function such that if t > 0, F F (t) is the shock
a a

strut friction force on the a gear piston at the time t.

F F  is the simple graph sucn that if t > 0
a

F (t) - F (t) I (t.
a a a3
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G is the vector function such that if t > 0, F (t) is the a gear

a a

axle force from the axle-wheel interface at the time t.

Each of F G b = 1, 3 is a simple graph such that if t > 0,

ab bc

FG (t) = FG (t) ( b c at the time t.

a ab c

MG is the vector function such that if t > 0, MG (t) is the a gear

a a
axle moment from the axle-wheel interface at the time t.

M G and each of M ; b 1, 3 is a simple graph such that if t > 0,

a 1  ab

G (t) MG (t) w  (t)MA GAa

a a11

MGA(t) -G (t) c
= GA Ja

ab c

The additional simple graphs required to determine the shock strut

force are defined below:

sa is the simple graph such that if t > 0, sa (t) is the a gear stroke at the

time t.

A is the simple graph such that if x is in [0, sC ], Ap (x) is the

a a a

area of the metering pin at the a gear stroke x. Ap (x) is the cross
a

sectional area in the plane where the orifice plate hole area A0  is
a
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measured.

AN  is the simple graph such that if x is in [0, sC ], AN (x) is

a a a

the a gear net orifice area of the main orifice at the a gear stroke x.

A N is the simple graph such that if x is a number, AN (x) is the

a a
a gear net orifice area for snubbiij at the snubber orifice differential

pressure x.

e is the simple graph such that if t > 0,

expansion of the hydraulic fluid in the a gear fluid chamber at the time t.

-S is the simple graph sucn that if t > 0, o S (t) is the volumetric expansion
a a

of the hydraulic fluid in the a gear snubbing chamber at the time t.

VH  is the simple graph such that if t > 0, VH (t) is the a gear fluid

a a
chamber volume at the time t.

V H is the simple graph such that if t > 0, VH (t) is the a gear snubbing

a a
chamber volume at the time t.

PA is the simple graph such that if x is in [0, s C ], PA (x) is the
a a a

pressure in the a gear gas chamber at the a gear stroke x.

PT is the simple graph such that if t > 0, pT (t) is the pressure in the a
a a

gear fluid chamber at the time t.
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PH is P T - PA [s a]

a a a

PTs is the simple graph such that if t > , pT s (t) is the pressure

a a

in the a gear snubbing chamber at the time t.

PH Sis - PA [ s a] for the type I strut configuration shown in

a a

Figure B-I.

PHs is PT - PT for the type II strut configuration shown in Figure B-3.
S S

a a

BFU ab is the simple graph such that if sa is in [0, s , BFUab(sa ) is the

shock strut upper bearing a gear reference system force coefficient for a

unit bth force component on the point A of the a gear.a

BFLab is the simple graph such that if sa is in [0, sC ], BFL ab(s a) is the a

a
gear reference system lower bearing force coefficient for a unit bth force

component on the point A of the a gear.a

BMUab is the simple graph such that if sa is in [0, sC ], BMU ab(sa ) is the a

a
gear reierence system upper bearing force coefficient for a unit bth moment

component on the axle of the a gear.

BMLab is the simple graph such that if sa is in [0, sC  BMLab(sa ) is the a

gear refer-nce system lower hearing force coefficient for a unit bth moment

component in the a gear reference system on the axle of the a gear.
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If the a gear stroke, Sa, is in [0, sC I and if t > 0, the shock strut
a

force , ( (t), may be expressed in terms of the forces and pressures acting
a

on and in the shock strut. This may be accomplished by isolating the piston

of the type I shock strut as seen in Figure B-2. From this figure the

following expression for the number FS (tj may be derived from a summation
aof the forces on the piston:

Fs (t) = PAMB AA - PT (t) (AH  - Ap (sa(t)))
a a a a a

+ PT (t) (AHs ( (t)))

a a a a

- PA (sa(t)) (AA + AH - ANs (PHs (t)) - A H
a a a

- PA (Sa(t)) Ap (s a(t)) + FF (t).

a a a

With

PT (t) PH (t) + PA (s a(t))
a a a

and

PTs (t) = HS (t) + PA (sa(t))

a a

it follows that

F (t) = PAMB AA - PH (t) (A - Ap (s a(t)))
a a a a a

+ pH (t) (A - A (p kt))) - PAa(Sa(t)) AA + FF (t)
H SH 3 N S SA a aAa F a
a a a a

where

A (t) = A0  - AN (a(t)).

a a a
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When the shock strut has bottomed (i.e. the shock strut stroke is less

than zero) it is assumed that the bottoming load is derived from a linear

spring and a linear (viscous) damper. Thus, for this case

FS W = P AMB AA - PH (t) (AH Ap (sa(W)
a a a a a

+ PH (t) (A H - ANs (p HS (t))) - PA a(s a(t)) A Aa + F F a (t)

a a a a

- KBG Sa(t) - CBG sa'(t).
a a

It is now required to derive the enquntion for the pressure in the shock

strut fluid chamber It is supposed that at the time t this pressure is

directly related to the volumetric expansion of the hydraulic fluid and

inversely proportional to the volume in the fluid chamber.

This relationship may be expressed by

- K H
PT Wt = V )a tW if lea(t) is < 0
a VH (t)a

a

and

P(t) 0 if 8 a(t) is > 0.
a

The volumetric expansion at the time t, )ea(t), may be obtained from an

integration of the sum of the functions that define the fluid volume leaving

the fluid chamber through the orifice and the rate of of change of the

volume in the fluid chamber. Thus,
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la' :CD AN [Sa] VH + VHa a a

is the function to be integrated where at the time t the velocity of fluid

through the main orifice, vH (t), is Jerived from the principle of
a

conservation or energy and the number VH (t) is therefore
a

H(t) (2 PH aH (t)) .t) 0 I,
PH(t)

(H t) (2 a . 5 fir :t

a PH

thf t vlenh fi:id rHet iD

PH (t)

a 

a0

and the rate of change of the volume in the fl id ,,;n,,-Mber i.9

aa a

A similar approach is useo to determine ti.> pressure at the time t in

tr.e srubbing chamber. The requi-ed equations *re

- KH
p t) 43 - t) if (t) is < 0,

S Vs (t) Sa a
aa

pT (t) 0 if' (t o,
S a
a

where

BS (t)' = CDs ANs (PH (t)) VH (t) + VH '(t),a H SSS

a a a a a

and

98



PHs (t)
a

v (t) = (2 0.5 for (t) > 0,
HSa PPSa

V (t) = 0 for p (t) = 0,
S

a a

Ps(t)

~ t= 2 a )05 for PHs (t) < 0,Hsa~t = - H S

V (t ()
VHs t) As sa'(t

a a

It is assumed that the gas volume in the shock strut at the time t is

defined by

VA a(t) = VsA 0 AAa Sa(t).

a

It is further assumed that n is a positive number such that the

thermodynamic process of the gas in the shock strut gas chamber during

compression is represented by

VA0

a

PA (t) ( - )n.
a 0a V A (t)

a

For the type II shock strut at the time t shown in Figure B-3 the

pressures pT (t), pT (t) and pA (t) are calculated from the relations
a S

aa

derived for the type I shock strut. There is, however, a different

equilibrium equation from which the number FS (t) is derived. The following
a
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expression for FS (t) may be derived from Figure B-4:
a

FS (t) = P AA - PT (t) (A - Ap (a (t))- ANs (PHs (W)
a a a a aS S

a a

+PT (t) (AH - ANs (PHs (t))) - PA (Sa(t)) AP (Sa (t)) + F F (t) for sa (t) > 0,

a a a a

and since

PT () H ()+ PA (Sa
a a a

(t) (t) +pT()PTs PHS

a a

and

A =A AAA : H - AHs

a a S
a

it follows that

F S PAMB AA - PH (t) (AH - AP (Sa(t)) -A H

a

+ pH (t) (A - AN (PH (t))) - A (Sa(t)) AA + FF (t) for s (t) > 0.

a a a a

For the case where s is less than zero, the same stiffness and dampinga

terms that were used for the type I shock strut are to be included.

Also, the rate of change at the time t of the volume in the fluid

chamber is

VH (t)' - CD  A (p (t)) v (t) - (A - Ap (S Sa(t))) s
a s S SS a a

a a a a

To compute the shock strut friction force function it is first

neccessary to calculate the force and moment functions for the gear axle.

This may be done using Newtonian mechanics. From this method it seen from

equation (C-i) that the axle force for the a gear may be expressed by
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= -/ ((AWa; ;It Pw a- dvw a GAa t a a a
a a

The a gear axle velocity function in the parenthesis of this equation

may be found in an expanded form in equation (7) in the Derivation of the

Equations of Motion section in the main body of the report.

If the indicated differentiations and integrations are performed and

the terms involving the rates of change of gear and airframe deformations

are omitted, then the following expression for the numbers

FG (t); b 1, 3 is obtained:

ab

FGA (t) - a  G 1(t) (VB 1'(t) +nB 2 (t) V B 3 (t) -&B 3(t) V B2(t))

a a abab ab

- MW  (G 
2(t) (VB2 (t) +fl B (t) VB2(t) -S2(t) VB3(t))

a ab

- M a C t) eV (t + 1(t) VB (t) (tt V (Ct))"W C[ t (B3't +'B B () B (

a ab

- fw

g(t) ehcd ( T(t) n

Mw aG ) B B Tt) G t
a ab  a-wa () 6+ ((t))([2 c(t) d

+ g A ( ' G d t A v sa() 1G d()Se dq gh s
a a a au (t) 3 p  v-B(t ) (t)) d rs

a ab  a

a a a a c qg
u v

-KWa a1a(t)(9Aa q + Aaq(Sa W) 8dg 8bh
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- MW 8qr3 (G (t))2 (gA + A a(s a(W) 3dq 3rs 3bs
a a a

- 2 MW G at) e B (  cp A a(s a)) s a'(t) CLG q(t) 3 3
a ab  a af

b f

- 2 % eh3d Q G (t) A a( )a ) a dq bhaaadq b

- MW a A h"(sa(t)) (Sa'(t))2 8bh - MW 6A(a(t)) Sa"(t) 8bh
a a a a

- MW BG f(sa(t)' I G (t)) q r(t) LG (t) 8bha A a a
a af

r

Wa (DGA a a b f

a
r

+ F (t) 7c (t) CL G (t) +M% g y"3t) G d t).
G a Bd ab cg a d ab

The contribution of the axle moment from the accelerion of the wheel

mass typically has a negligible influence on the strut friction forces.

Therefore, this moment ccntribution will not be formulated. However, the

axle moment from the ground forces may in some cases have a significant

effect on the strut friction force. It is assumed that the axle moment from

the ground force is parallel to TW (t).
a1

Thus, the axle moment from the ground force is

M W A ( Wt) A t) (Ca (t) + W (t)) x PG (t)) IW (t).
aI  1 a a a a1

Therefoe, U. is fo0n1 that
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b c d:G (t) b(t) ebcd (wC c(t) + vW (t)) FG  (t).
GAa aI  a a a

The moment components at the time t in the a gear reference system are

determined from

M (t) MGA (t) t) (t)
AAa abab 1I  b

or

MGA (t) = MGA (t) a G (t) B YW (t).

ab bad

The next step in the derivation of the shock strut friction force is to

determine the bearing reactions between the piston and the cylinder. When

computing these reactions the assumption will be made that the forces on the

piston (and axle) from the acceleration of this mass can be omitted. This

permits the bearing reactions to be computed from a simple expression

involving the axle forces and moments. Therefore, it follows that the

number F (t) can be determined from the following equation:
a

s '(t)

F Ft) (BU (BFU a(s a(t)) F (t) + BMUa C(s a(t)) M t))
F s aU a0 a a a G

a a IF ab MAa c

+ 4L(BFLa d (F + BML e (s a(t)) MGA (t)).+ BL a (Sa~t)) G t) a BM aG

ad ae
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Figure B-1. Schematic of Type I -Shock Strut
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A a P Sa a

PA (s a(t)) (A A+ AH

a

- pH -A H S
Sa S aa a3
aeaai 3

reaction

friction
force

- (t) (A H -S a

a a

A P (a(t)S ()
a a 3

bearing
reaction

friction
force

shear TF TTT TVITI
m oment/-

~AMB A S
a a 3

F (t)
a

Figure B-2. Free Body of Type I Piston a
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Figure B-4. Free Body of Type II Shock Strut
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APPENDIX C

MODIFICATION OF LAGRANGE'S EQUATIONS FOR NON-HOLONOMIC CONSTRAINTS

AND QUASI-COORDINATES

Suppose that V is a volume in E3 space containing a collection of mass

particles and that S is the surface of this volume. Further, suppose that Q

is a point fixed in space or moving with a constant velocity and that j is a

1 2 3vector function such that if t > 0 and if (x , x , x ) is a point

in V, r(x , x 2 , x3 , t) is the vector at the time t from Q to the point

labeled (x1, x 2 x3 ) in V.

Now suppose that 8 is the vector function such that if t > 0 and if

(x1 2 x 3 ) is a point in V, x x2  , t) is a vector which at the

time t is tangent to the constraints (which are assumed to be fixed at the

time t) on the point labeled (x x 2  x 3 ) in V but otherwise arbitrary in

magnitude and direction.

Further suppose that

is the vector function such that if t > 0 and if (x , x , x ) is a point
-1 2x3'

in V, P(x , x , x3, t) is the body force per unit volume at the time t at

1 2 3the point labeled (x , x , x3 ) in V,

Z-is the vector function such that if (x , x , x) is a point on the surface
123

of V, V (x , x , x3 ) is the unit vector normal to the surface at the point

labled 1x 2 x3

labeled (x x ,x on the surface of V.
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T is the vector function such that if t > 0 and if (xI , x , x ) is a point

-x1/ 1 2 3
on the surface of V, T (x , x , x , t) is the surface force per unit area

at the time t on the surface point (x , x , x3 ) where the normal vector is

- 1 2 3L(x , x , x3),

Pis the simple surface suci, that if (xI, x 2 x 3 ) is in V, P(X1, x , x3 )

is the mass density of the collection of mass particles at the point labeled

(x , x , x ) in V, and

S W is the simple graph such that if t > 0, 8W(t) is the (virtual) work

done at the time t by the component of the body and surface forces

in the direction of the vector 8 (t) acting through the distance IS(t),

then from Reference (1), the Principle of Virtual Work states that

SW = - r 8 dV Sr P( " )r) dS = 0. (C-i)

The principle of Virtual Work may be used as a basis for the derivation

of Lagrange's equations. However, before Lagrange's equations can be

derived, the vector function Sr must be rewritten in terms of the

coordinates (i.e. functions) that describe the motion of the collection of

mass particles.

A vector function that could be used for this purpose is a modification

of the velocity vector function. To develop this vector function suppose

that n is a positive integer, each of q a; a = 1, n is generalized coordinate
1 1 2 x3

and P is a vector function of class C such that if t > 0 and (xI, x , )

is in V,
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-1 2 3 1 2 3 arx , x , x , t) =(x , x , x , t, q (t); a n)

at the time t.

The velocity vector is therefore

Ft(x1, x2 , x3 , t) = f;qb(x I  , x2, x3 , t, qa(t); a = 1, n) qb'(t)

+ (x1 , x 2 , , 3 , qa (t); a = 1, n).

In this expression the R term has a contribution to the velocity for

the case where the constraints are time dependent. However, for the

calculation of F, this contribution is not included since the constraints

are fixed when F is determined.

Therefore, the expression

r(x , x 2 , x3 , t) = qb(x , x2 , x3 , t q a(t); a 1, n) qb'(t) (C-2)

may be used to derive the vector function 8r that could be used in equation

(C-i) where it is understood that (within the constraints) that each of the

coordinate derivatives are independent and arbitrary in magnitude.

This substitution for the 8 in equation (C-I) will provide the

formulation needed for the derivation of Lagrange's equations for the case

where the motion is expressible in terms generalized coordinates.

For this purpose suppose that T is a simple graph such that if t > 0,

T(t) is the kinetic energy of the collection of mass particles at the time
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t. Further, suppose that K is a simple surface such that

C C
T K[q ; c = 1, n, q '; c = 1, n]. (C-3)

Therefore, if each of Qa; a = 1, n is a simple graph such if t > 0,

Q a(t); a = 1, n are the generalized forces acting on the collection of mass

particles at the time t and the acceleration function term is expressed in

terms of the kinetic energy function as illustrated in Reference (5), then

the Principle of Virtual Work may be rewritten in the form of power rathe'

than work as follows:

a
((K qa,)' - K qa - Q qa 0. (C-4)

Lagrange's equations may be easily derived from equation (C-4) for the

case where the velocity functions are independent.

In some cases it is preferable to write the equations of motion in

terms of non-generalized (quasi) coordinate velocity component functions.

For example, it is frequently desirable to have the rigid body motion of a

collection of mass points be determined from the body axis components of the

velocity vector function and the angular velocity vector function. These

are not, however, generalized coordinate velocity component functions since

the position of the body cannot, in the general case, be determined from an

integration of these velocity component functions.

Suppose that each of Va; a = 1, n is a quasi-coordinate velocity

component function and that each of Aa;a 1 I, n; b = 1, n is a simple
b

surface of class C at each of its points and
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va Aa[qc; c n] qb, (C-5)

Further, suppose that each of B a = 1, n; b = 1, n is a simple

surface such thpt

q Bb[qc; c = 1, n] V

It follows then that if

C a = Ab[qO; c = 1, n]

and

b B[q; c = 1, n],

then C b is unity for the case where a is equal to c and zero for the

case where a is unequal to c. Also, it is seen that

qa, = b v (C-6)

If equation (C-6) is substituted into equation (C-4) and if each of

Sb; b 1, n is a simple graph such that

S a~ (C-7)Sb : b Qa'(C7

then

( K ,q)' ba K q - S b) Vb 0. (C-8)

It remains now to replace K ;qa, and K ;qa with functions expressible in
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terms of quasi-coordinate velocity component functions. For the purpose,

suppose that K is a simple surface such that

T = K[qC; c = 1, n, vC; c = 1, n]. (C-9)

The kinetic energy functions in equations (C-3) and (C-9) may be

differentiated to yield

T' = K;qa qa, + K ;qa, qa, (C-10)

= K a q + K ,a V '.

But, from equation (C-5)

ba, a b c qd , qb.

V Ab;qc q A[ ;

Therefore, by comparison of like terms in equation (C-10) it is seen

that

dcK ;qa, K d A [q ; c = 1, ,

d bfK;qa K K;q a + K;vd A;qa qb,.

If these expressions are substituted into equation (C-8) then it is

found that

ad (K ;d), + K ;vd Ad c Ve

K -K d a c Ve] = Sb-K;qa ;vd Ac;qa e b,

and if
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8d =Sa (Ad a - AdC) c ve (C-11)b b c;q a;q) /e '

then

((K vb)' -2 K d _ aV b  (-12)b K;qa -Sb)V : C-2
;V ~b ;V b;

is the Principle of Virtual Work expressed in terms of quasi-coordinate

velocity component functions.

Now suppose that m is a positive integer, but less than n and that each

of rab; a = 1, m is a simple surface such that if t > 0,

Fab(t, qC(t); c = 1, n) V b(t) = 0 (C-13)

is a constraint on the collection of particles at the time t. Note that the

constraint relation is linear in terms of the quasi-coordinate velocity

component functions.

Further suppose that F is a simple surface such that if t > 0,a

c b
F a (t, q (t); c = 1, n, V (t); b 1 1, n) (C-14)

= Lab(t, qC(t); c = 1, n) V b(t) 0

at the time t and if each of Xa; a = 1, n is a simple graph (a Lagrangian

multiplier) such that

a~)c bAa(t) F (t, q C(t); c = 1, n, V (t); b = 1, n) = 0 (C-15)a

at the time t.

It follows then that for the case of non-holonomic constraints
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expressed in the form of equation (C-13), Lagrange's equations may be

written as follows:

Kvb)t  -gd K d _ 9a K a S F b. (C-16)
;V b ;V .k~b ;q b a;V

The use of equation (C-7) to find the Sb; b = 1, n functions is often

difficult. A more direct approach is to develop another candidate for r

in equation (C-I) in terms of the quasi-coordinate velocity component

functions. Suppose that A is a vector function such that if t > 0 andb

1 2 3(x , x , ) is in V, then the the sum

Ab(x , t, qa(t); a = 1 n) vb(t) (C-17)

52 2 3
is this candidate for 8r(x , x , x, t) at the time t for the point labeled

1 2 3(x , x , x ) in V. Note that the vector in (C-17) is the same as the vector

in (C-2). However, the vector sum in (C-17) arises naturally from the

differentiation of the vector function r when quasi-coordinate velocity

component functions are used. It follows then from equation (C-I) that

S Jb = fV A b)dV + f (Tb A b) dS. (C-18)
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APPENDIX D

DEFINITION OF THE MASS TERMS

The mass terms which appear in equation (8) are defined below. These

terms are derived from the operations required when equations (5), (6) and

(7) are substituted into equation (1).

VB VB
(M b c

(fB dVB + 1 G 0 dVG + a 1(W PW dVWa) bc
B a=l a a a= a a

a a

B nB
(M b c)[sa' OG ; a = 1, NC]

a

S 8 g h L d L e g dV

B bd B B eh cg

NG 8 h d df[IxG

bd + (Gaf + [I 1' I 2, 1 3, sa]))
a af a aa fG a

x + ( G  (Ua f + _af[Ix 1, IG 2, I 3, a eh 6cg )P dV-
a af G G a afa a aa

+G8gh (1d + Ld (gff
7.bd ( T +IG (A + 61f[Sa ] + 1G fWam))

a=1 a af a a a

x ( e e f + A f Wam P dV

T a G a + a ]  + a aG a ) eh cg a d a
af a a aa a
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f G G
(M a )[sa

NV 3d  (G 1, I 2, 1 3,f G 3c a + -- -aC[Ix G ' I G  IxG a
G G
a a a a

X(ah + 1a~x ,Io2, Ixo 3 , Sa 1 ) 3dh Oa dVGa

+ VW  3d c + 6A s[ ] + W f3c (gCa + t8 G a
Wa a af

a f

x (gAh + 6A h[sa] + /AG h W a) dh PW dVw
a a af a a

w w
(M a a)

.v 32 W Pw dVw
2g Waf Wag rf a a

s s
a a

(M )[s aa

JV as a a;s a cd PG dVGG aa a aa

+ a ( 6A '(sa] + BG '[sa]
a Gab

d,r d w ex,[sa( + BG [s a cd W dVwa a a a
e
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qB qB

(M b c) [S a '  G  ;a = 1, No]a

B dfB ede JOB dVB
: B bb c

G .d[x 1+ , 1 , 1 3, Sa 3 G ]

a: I a b G XG G a

x (()BGa e[IxG 1, IxG 2, IxG 3, s a , Ga 3 de PG dVG

c a a a

(~fW BG dsa' a G BG e[a' G de W dVw
az1A a A a a aa ab a c

qG qcG

aC

(M ab a [Sa' 0 G ]

a

f GVG d[IxG 1, 1XG 2, xG3, a ' OG
a b a a a

x ( [lx iG 1, IxG 2, IXG 3, s G a' 3 de OGa dVG
C a a a

+ da ] 0 G Sa' &G Es e  de PW dVw
W A a A a a aa a a

b11
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VB B

(M b B)[Sa, G ; a = 1, NG]
a

FVB ebcd LBd PB dVB

N G d idad

a a+ 7f~ e bCd (iT +Q d (Gm a d

+ M[ 1  1 2 3, s ])) P dV
a XG xG XG a G aG

a a a

S ebcd (iTad + G (gam + Aam[edd + m w f PW dVw
a a a a a a

VB &' G
(M b a )[S a G O

a

fV G eh3c (Ga f (Ga c + = c[ixG I1, IXG 2, IXG 3, s ]) 8dh 8bf PGa dVG

a d a a a

1f eh 3 c (CLGaf (gAac + 6Aa c [ s a ] + )G a c Wan)) 8dh Sbf PWa dVwa

a d m

VB s a

(M b )LSa' OG

= d s P dVG

a c a a
a

+ f$AG G °,6 Aa ,,o a + B GW P w awa c a

120



VB qB

(M b c)[Sa, OG ; a = 1, N ]
a

d P, dV~

NG (V BV 8 dBBN G

+~JV 2, 1, 3, sa '1  P dV-I XG 't)BG '[I 2,1 x a'O bf GGa~fG ad a G G G a a a
a: a ad c Ix a ' x a Ix a 'a

N f% T 3 bf

=aa d  a a a
a a d a

C

V B qG

(M b ac)[s a G ]

a

d e[xG I' IxG 2, I 3, s G a PG dVG= G CLa a GIGG ' a a a
J t V'~G 0 a b ~ ~ a

a e c a a a
QV G d Gae [a

+ fv LGd(1 G s a' G a 3 bd Powa dVwa

a e c

QB G2
(M b a)[s aOG ]

a

8,q c a + aC (G h h[Ix 1, I 2, I 3, s D)

G bc (TG a a a
Ga a a a x ' x G G Sa] nra h a a a

x r (L s ( G d + =[d 1 2, 1i 3, s 3) 8P dVG a G a a a XG X G xG a '~ nrL 8qs G a Ga

b cn ( 1 I T  + ( 3 [ G ( g A h + A h s a ] +  Ge h a n )
W a ah  a a a a a

G r CG (gA d + A [sa Waf) nr qs h
W3  a a a a f a a

3 d2
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B W
(M b )[Sa 0

a

1w J nq (i ac + CLG c (gAh

be T~a G AGi)
a a ah  a

+ 6,a h( sa] + ISG ah Warn)) /G aP CL G ar ) G ah CL G as W~d 8 mr 8qs PW adV wa

m  2 p d  h

B Sa
(M b )[Sa' 'G ]

a

fVG ehbc (Tac + aGa (G am

a in

+= [1 1, 1 2, 1 3, s . 5h P, d~dVG
_a X G a x G a xGa a G a d a;a a G aGar a a a aad a;a

* Vw ehbC ('T c + aGa c (gAam + 6Aam[sa] +/BG m waf))
a a aaaf
a inf

* a g d, [s + B d[s I w) 0 h P dVw
ad  a a a a
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O-B q B

(M b c)[Sa, 0 G ; a =1, NG ]
a

fV B ebb LB s (t f 8h Ph

B hbs B B f FB dVB
NG f  e (1 m[x

+ ehb +J ( G m i + G 1, 1 2, 1 3, sD)
a a X G xG G a

a m a a a

x(B x 1, 1 2, 1 3, s, 8G f dx G fBG XG x G xG a a aV
n C a a a

s(a~G 1 +~ m -m[ 3 + ~9m War)+ .J VW e hbs ( IT s + (IG sgA m+ 6 [s a] + G ar

a a a a a
a m r

G fBG n[sa, h PW dVw
a A fG a a

n a
c

iB qG

(M b a [Sa' G ]

a

v ebs + s (Gm + 2 m[ I 2, 1 3, sa])
G a a XG G xGa m a a a

C L G xG I , 1X 2, 1 3, s Ga] f 8 Pa dVGan c a a a

' V W  ehbs ('TaS + CLG a s (gA ma + Gam wag))

a m gCf [ Sa h PW dVw

G G tG A  a' 6 G ]  Fha Aa a an a
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9G 9w
(M a a ]

fW 8v 839 (g b

a
faa

+ A b[s] + b Warn) 8  h dG W 3 P dVa
a a Sa a Ga2  ad a gb W Wa a a

' Sa
G sa(M a )[sa ]

c (G c , I 2, I 3, a P dV
fV G eh3c (Gac + 'a x G x G x G a a~sa d Ga GaS -Wa a c Ga a aa a

+ eh3  ( c

Wa aa

+ e c (G c ) a d [G d, s
A [S] + G Wan)[( A ] +B [S]Wa )Qd PW dVw

a a a a a a
A e

(M a b)[S~a' 0 G ]

J'V (GaG'IX
G ehc (  + 1 I 1 2, 3, s ]

a BG xG X G x a

a a a a
A d~] d[Ix 1, I 2, IG 3, sa , 

0 G ]  G d

ad a a a a a

+ 
eh3c (g 

A c

a

A a  a G am) CLG BGA [G, G 0 W Vw
im Ga Ab a a a
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S- G qG
(M a ab)[Sal OG

a

=I G eh3 c (GC + aC[IxG 1, IxG 2, IXG 3, s a

a a a a

d 1, 1 2, 3, s h P, dV
a()g x G x G  x G  a' G d a ar a aa

fC earc ds G]8h PW dVw

eh3 . (gA c+ A Csa] + GC War G A a' Pd
Wa a ~ - ''a a a

a m ab

Saq

(M b)[Sa' PG
a

V  = c le d IX2 3 s ] e dV
fVG B -a;s aGad( G ab[xG1,1x G ,1x G ,sa a i~ce PGaC Gaa a G G G a a a( a d b a a aa
JbVW(cI

5  + ~~ a e IBAd s, 0 Ga 8 ce Pw dVw
+( Aa'[a] + G Sa] a G[a

W aaa f d a b

ab(M b) [S 0 GS
a

J'v ~~ ~ I1 ,I3 'V -10 d~ v°

G a ; S a G a b [ Iabd Gix G 2, xG 3, G a G aa a G
a b a a a a

+ vW 6 ,Ac sa] + B Gac'sa] Wa,:) ,GA d[sa'  O a 8 <cd Pw dVw
W a afa a a

a f ab
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afA d f[1 1 ,I~3 a 0

fV Ga f BGab a a ,1xG3 a 'Ga

x 4) G [Ix 1, lx 2, 1I 3, sa OG 1 Sde PG dVG

fCA a a a

VW CLG d BG A f[sa"Oa](D Ae stOGa ] de W. a WV
a f a ab a a
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APPENDIX E

DERIVATION OF THE GROUND FORCE EQUATIONS

The derivation for the component of the ground force on the tire that

is normal to the ground plane was given in the body of the report. It was

established as being functional dependent only on the simple graph vW . The
a

grolind force components in the ground plane are somewhat more complicated.

One of the complications is that the ground forces are dependent on whether

or not the tire footprint is slipping on the ground surface. Prior to "spin

up" of the wheel the tire footprint is slipping on the ground surface and

the force in the ground plane is in the direction opposite to the velocity

vector of the tire footprint. The magnitude of this force is determined by

multiplying the magnitude of the ground force component normal to the ground

plane by the friction coefficient which may be defined in the following

manner.

Suppose first that R is the simple graph such that if t > 0, R (t) isa -- a

the slip ratio of the a gear tire at the time t (i.e. the ratio of the

magnitude of the tire footprint skidding velocity to the magnitude of the

velocity of the axle parallel to the ground). Also suppose that /LG is the

a
simple graph such that if x > 0, 4G (x) is the friction coefficient between

a
the a gear tire and the ground at the slip ratio x.

After spin up (i.e. the slip ratio is zero) the forces on the tire in

the ground plane change their functional dependence. The drag force

component on the tire in the ground plane is assumed to be a number times

the normal ground force component. The side (or cornering) force component
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is defined through the following functions.

Suppose that V) is the simple graph such that if t > 0, 1C (t) is
a athe cornering angle of the a gear tire at the time t. Suppose further that

FC is a simple surface such that the point (x, y, FC (x,y)) belongs to FC
a a a

only if at a cornering angle x and a normal ground force component y,

FC (x, y) is the side force component on the tire.
a

Also, at a time t after spin up of the a gear wheel the component of

the ground force parallel to the unit vector IW (t) (i.e. the drag force
a1

component on the tire) is determined by multiplying the normal ground force

component by the rolling resistance R which is assumed to be a number.
a

The vector functions needed to define the kinematic relations are

described as follows:

rA is the vector function such that if t > 0, rA '(t) is the velocity of
a a

the a gear axle point A with respect to the point Q at the time t.a

rFA ' is the vector function such that if t > 0, rFA '(t) is the velocity of
a a

the a gear tire footprint reference point CF with respect to the point Aa
a

at the time t.

Each of IW ; b = 1, 3 is a unit vector function such that if t > 0,
ab

[W (t) is L3' IW (t) is the cross product of kG (t) (see Appendix G) anda3  a1  a2

IW (t), and IW t) is Iw (t) x IW (t) at the time t.
a3  a2 a3  a 1
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The derivation of the kinematic relations may now be accomplished with

the help of the unit vector systems and the transformations defined in the

main body of the report and Appendix G.

The a gear right hand orthogonal unit vector functions IW ; b = 1, 3
ab

for the wheel-ground reference system may be expressed by the following

functional relations:

kG x 13
I Wa G x 3a2

a2

b c (B Ii - I X 2 )

a2 ab c c

bB) + b c B)].

[(SG b G c TB1)2 + 3G b(G

a2 ab c a2  ab  c

3 x (kG x 13)
3 a2

Wa2  3 x (kG x l 3) I

8 G b G c(BI 1 + TB2 '2)
a2  a b c c

(8 G b G c B1) 2  + ( G b (LG c 2_2 20.5

a2  a b c a2  ab  c

W a 3"
a 3
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The axle velocity of the a gear may be obtained from the terms in

equation (7) in the main body of the report. This velocity is expressed by

rA '(t) (t) + B(t) x (IT (t) + gA (t) + A (sa(t). t))
a a a a

+ 2 G (t) x (iA (t) + 'A (sa(t), t))
a a a

SBG (t) a, (tt) + 6A ;s (sa(t) ' t) sa'(t)
+DGA a a aab

A a a

ab

or in expanded form

*A '(t) 1 Bf(t) VBf(t) + i Bf W efPhnB e(t) 1T a d  ep 8 dh

a af a
* ( f h~2e() d (t) (g C + C(sa(t)) e d
B t f h  Bet CGa0  a Aa ~

c

+ IG (t) ed 3 f nG (t) (gA + A C(sa (t)) 8cf
ad a a a

+ 'G (t) (DBG A d (sa (t), OG (t)) qBf'(t)
ad Af a

d ~ a f

+ 3G (t) d,(a (t)) s '(t)+ G () A a( a
ad a

+ 3G (t) (DGA d(sa(t), OG (t)) qG b
ad ab a a

ab

Thus, with

b = dW (t) I (t),
ab a

C

the axle velocity is
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rYB c(t) (VBf (t ) + e fp h 
bjB

e
t) (T d

0A(t(t)t) +We(t)h(2(tt) (1
a ac  a b a

+ aLG d (gA q + 6A q(s a(t))) 8ep 3 dh
a a a

q

+ a b Bh Y c(t) ed3f Q G (t) (gA q + 6 A q(sa(t))) 3qf
ad b(t) Wah  a a a

+ YG b ( t )  c Ca(t)()BGa d(sa(t)' 0 G (t)) qBf'(t)
a d b a ha fah c f ,s~t)St

+ LGb(t) 'B'Bb(t) W(t) 6A(5a()s a'(t)

ad baha

+ Gb ( h btt)^4 c (( GA d (sa(t)' 0 G (t))) qG b,(t)).
ad b a hA a b a aad  ah ab

With the assumption that the stroking velocity has a negligible effect

on the velocity rFA '(t), this vector may be approximated by
a

FA '(t) =(W (t) (2B (t) X w-C (t) + (2B (t) " G (t)) kG (t) x v-W (t)

a a a2  a2  a

+ OG (t) x W C (t) + W (t) x W C (t) + W (t) x vW (t)) IW (t))
a a a a a a a

+ (W A(t) (B(t) x Wc (t) + G (t) x Wc (t)) W (0)A2 a a a a 2

+ Iw  (t) vw 'Ct).
a3  a

After the indicated vector operations are performed it is found that

FA W (( Bb (t) 0(t) e b dg 8 eh UW f

* (fBb(t) O8 G C(t) C G d (t) 3 bd )

a2  ac

* (vW (t) f (t) C g(t) YBh(t)e 3 hs W (t) 8m)W (t8G ft G BhsYWr

a a 2  af 9 am
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+ (Q (t) w C(t) G. d (t) f(t) e rst 83 Or 1( ) 9
G C G (t) Bd f ct tt

+ (t) w c(t) b (t) C d (t) f (t) e 3 1 (t) 
a a a2 ab  d a

W V (t) b ( t ) (I d f ( B t ) ers3 1(t) 8r g ) )

F'W G G TB df Wr
a a a2  a b dag

+ (t) ((S2 Bb(t) waC(t) d/B (t) efgh 2dg ch W2(t) 3f)
a2  a Bm

+ (rGa (t) wC (t) Ga 2(t) d (t)erst 8 2 (ct

+ Tw  (t) vw '(t).
a3  a

The a gear wheel has reached a spin up condition at the time tSU if

A (tSU +FA (tSU w (t SU 0.
a a a 1

For t < tSU the ground force parallel to the ground plane is in the

direction of the vector

rA (t) 1W (t) r FA (t) 1W (t)) 1W (t)
a a 1 a a 1 a 1

+ (-A 't W  (t) -r FA '(t) * iW (t)) 1W (t)

a a2 a a2  a2

=-A(t) 1 W (t) - B~t) [W (t).

a 1  a2

Now suppose that "'a is the simple graph such if t is in [0, tSU

-1 B(t)
a(t) = tan

A(t)
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at the time t.

Therefore, since the slip ratio at the time t is defined by

A + TFA '(t)) IW
a a aI

R a(t) = 9
a A '(t) W

a a I

and since the ground force vector may be expressed in terms of its

components in the wheel plane reference system by

b
FG (t) = FG  (t) W (t),

a a ab

it follows that

F 1 =- ~ [3FG I _ G ['a FG cos[Vall
a a a

F 2  G [R] FG sin[ Va],
a a a

F G =F G
a a

For t > tSU the ground force component parallel to I W (t)
a 1

is derived from the wheel and the tire rolling resistance. The ground force

component parallel to W (t) is derived from the tire cornering effect.
a
a2

If each of C and D is a simple graph such that if t > t

C(t = rA '(t) Iw  (t),
a a1

and
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D~t) F A W(t) * 1w  (t)

a a2

at the time t, the cornering angle of the a gear tire at a time t may be

approximated by

-1 D(t)

V C (t) = tan - .

a C(t)

It follows, therefore, that

1 ~ 31,
F, 1 4 IF 

a a a

FG F = L F , FG3 ],

a a a a

3 3FG F G
a a
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APPENDIX F

DERIVATION OF THE ARRESTING HOOK FORCE EQUATIONS

The following derivation of the arresting hook force equations will

accommodate yawed, rolled and drift landings in addition to landings where

the arresting hook engages off the midpoint of the cable. In this

derivation it is assumed that the arresting hook and the cable are massless.

Therefore, the orientation of the arresting hook and the cable may be

completely determined from the dynamics of the airframe and the geometry of

the arresting hook and the cable arresting system. The arresting force from

the cable is assumed to be a function of the cable runout only. It is

further assumed that there is friction between the arresting hook and the

cable interface. The derivation of the equations for the arresting hook

forces accounts for both slipping and not slipping of the arresting hook on

the cable.

Some of the equations involved are nonlinear algebraic and

trigonometric relations for which a closed form solution is not viable. For

these cases an iterative approach is described that may be used to obtain a

solution.

The points on the arresting hook, cable and the ground that need to be

identified -ire described as follows:

H is the point of attachment of the arresting hook to the airframe.

HP is in the arresting hook plane of symmetry and at the center of the cable
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cross section subsequent to cable engagement.

HC is the point on the ground such that the straight line perpendicular to

the ground containing the point HP contains the point HC.

LP is the lateral pivot point in the arresting hook shank.

SL is the point of exit of the cable from the left hand cable sheave.

SR is the point of exit of the cable from the right cable sheave. The

straight line containing SL and SR is assumed to be parallel to the straight

line containing the ground fixed unit vector 12 which is defined in the main

body of the report.

S is the midpoint between SL and SR.

Q is the ground reference point.

N is the airframe reference point.

The numbers required for the calculation of the arresting force are

defined as follows:

tC is the time at which the arresting hook engages the cable.

dBAR is the horizontal travel (parallel to 1i) of the point HP from time

equal to zero to time equal to t .
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ROM is the maximum runout of the arresting cable system.

SH 0 is the initial (i.e. at a time t before contact with the ground or

cable engagement) angle between the arresting hook shank and airframe unit

vector i B(t).

C is the friction coefficient between the cable and the arresting hook.

bc is the cable semispan (half of the distance between the points SL and

SR).

The following vector is required to establish the cable geometry:

vS is the vector parallel to 13 from the point S to the ground and vS is the

minimum distance from the point S to the ground. Therefore,

V=Vs I3"
vS= S 13*

The following vector functions are required in the derivation of the

arresting hook force equations:

I I and I are orthogonal unit vector functions such that if t > 0,
H' H 2 H3

I H(t) and I H(t) are fixed in the plane of the cable with I(t) = 12

I H(t) is normal to the plane of the cable and directed down relative to

the pilot and I HI(t) = IH2(t) x IH3 (t) at the time t.

IL is the vector function such that if t > 0, iL(t) is the vector from the
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point HP to the point SL at the time t.

1L is the simple graph such that if t > 0, 1 L(t) is the magnitude

of the vector iL(t) at the time t.

I R is the vector function such that if t > 0, 1R(t) is the vector from the

point HP to the point SR at the time t.

1R is the simple graph such that if t > 0, 1 R(t) is the magnitude

of the vector iR(t) at the time t.

,10 is the vector function such that if t > 0, ROt) is the vector parallel

to the unit vector I H(t) from the straight line containing the

points SL and SR to the point HP at the time t.

RO is the simple graph such that if t > 0, ROt) is the magnitude

of the vector RO(t) at the time t.

R is the vector function such that if t > 0, R (t) is the vector from the

point S to the point LP at the time t.

H is the vector function such that if t > 0,

H (t) (t) " (t)) Ht).

6H is the simple graph such that if t > 0,

6H(t) = 6H(t) I H1(t) at the time t.
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is the vector function such that if t > 
0.

77H(t) = (RH (t) "H 2 W) IH 2(t).

?H is the simple graph such that if t > 
0,

SH(t) = 7?H(t) IH 2(t) at the time t.

F is the vector function such that if t > 0, F(t) is the vector from the

point Q to the jig condition location of the airframe reference point N at

the time t.

d is the simple graph such that if t > 0,

d(t) = F(t) * II at the time t.

s is the simple graph such that if t > 0,

s(t) = F(t) * I2 at the time t.

rH is the vector function such that if t > 0, HrH(t) is the vector from the

point Q to the jig condition location of the point H at the time t.

1H is the vector function such that if t > 0, 1H(t) is the vector from the

jig condition location of the point N to the jig condition location of the

point H at the time t and each of 1 Hb; b = 1, 3 is a number such that

H (t) Hb iBb(t).
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FHP is the vector function such that if t > o, FHP(t) is the vector from the

point Q to the ooirt HP at the time t.

vH is the vector function such that if t > 0,

SH(t) (H(t) * 3) f3.

vH is the simple graph such that if t > 0,

H (t) = vH(t) f3 at the time t.

IHP is the vector function such that if t > 0, 1HP(t) is the vector, with

magnitude the number 1HP, from the point LP to the point HP at the time t.

I P is the vector function such that if t > 0, 1LP(t) is the vector, with

magnitude the number 1LP, from the jig condition location of the point H to

the point LP at the time t.

1 HV is the vector function such that if t > 0, 1HV(t) is the vector, with

magnitude the number 1HV' from the point H to the point HP at the time t.

d HP is the vector function such that if t > 0,

adHP~t) = (HP(t) 1 1i) 1 •

d HP is the simple graph such that if t > 0,

HP (t) d HP(t) TI at the time t.
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VHP is the vector function such that if t > 0,

HP t) rHPt) 3 3*

vHP is the simple graph such that if t > 0,

HP (t) = vHP(t) 3 at the time t.

I I and i are the unit vector functions such that if t > 0,
1 2 3

H (t) has the direction of - i(t), 1H2(t) is 1B2(t) , and

H (t) is orthogonal to I t) and I H(t) and is directed down

with respect to the pilot at the time t.

F and FH are the vector functions and F and FH are the simple graphs

such that if t > 0, the force on the point HP from the arresting hook is

HP (t) (HP (t) IH (t)) I H t) - H (t)

SFHP (t) Hit) 1 - F H(t) IH (t) at the time t.

H is the vector function and F and F are the simple graphs such that

if t > 0, FH is the component of the vector FH such that

FHI (t) = (FH (t) "H 1(t)) H 1 t)

SF H(t) IH1t) = F H(RO(t)) i H(t) at the time t.

Each of FH a; a = 1, 3 is the simple graph such that if t > 0,
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H (t) = F a (t) a at the time t.

1L is tne vector funcAon such tiat if c 6 G, TL1) is tne force on the

point HP from the cable segment between the points HP and SL at the time t.

TR is the vector function such that if t > 0, TR(t) is the force on the

point HP from the cable segment between the points HP and SR at the time t.

In addition, the following simple graphs are needed in the arresting

force equations:

kBAR is the simple graph such that if t > 0,

k BAR (t) = jL jt)I - I R (t0I at the time t.

SH is the simple graph such that if t is in [0, tc], OH(t) is the angle

between the arresting hook shank and the unit vector B3(t) at the time t.

FT is the simple graph such that if x is in [0, ROM], FT(x) is the magnitude

of the arresting force at the cable runout x.

LL is the simple graph such that if t > o, a L(t) is the angle measured
clockwise from the straight line that includes the points HP and SL to the

straight line that includes the points SL and S at the time t.

CIP is the simple graph such that if t > o, a R(t) is the angle measured

counterclockwise from the straight line that includes the points HP and SR
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to the straight line that includes the points SR and S at the time t.

EC is the simple graph such that if t > 0, 2 E c(t) is the angle measured

counterclockwise from the straight line that includes the points HP and SL

to the straight line that includes the points HP and SR at the time t.

The cable bisector line is the straight line that is in the plane of the

cable and contains the point HP and at the time t, iC(t) is the angle

measured clockwise from this line to the straight line containing th points

SL and HP.

EH is the simple graph such that if t > 0, C H (t) is the angle measured

clockwise from the cable bisector line to the straight line that includes

the points LP and HP at the time t.

EHL is the simple graph such that if t > 0, IEH L(t)I is the largest number

for the magnitude of the angle E H(t) for which the hook will not slip on

the cable at the time t.

A 1
E H is the simple graph such that if t > o, E H(t) has the magnitude

EHR (t) I and the sign of E H(t) at the time t.

CLC is the simple graph such that if t ' o, aQc(t) is the angle, measured

positive from the ground plane, that is formed by the intersection of the

ground plane, the cable plane and plane which is normal to both the ground

and cable planes at the time t.
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If the effects of the airframe deformation are neglected, the

orientation of the hook at the time t = 0 may be represented by the diagram

below. In this diagram the point N, H and HP are coplanar.

N

(o) BH
(0)

FH(0) arresting
hook

1V 1 QQHb

ground surface May

1

3

Therefore, it is seen that if

H () H rB- (0),

then

dHP (0) HP (0) "1 I  d(O) + lIH b  3 lb 1Vs14(H 0

3b COHo) ) /Bl(O) "

If the hook is above the ground for t < t C then the diagram below may

be used to orient the hook.
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N

H~HP

~~arresting J

i _V (t)

-F (t)(t

I2 HP H(t) HP(t)

ground surface HC

13

From the diagram above it is seen that

rHP (t) = rH(t) + lHV(t),

and it follows that

dHP(t) HP(t) " I1 d(t) + ( H b  l1 b 1 )ins1 H 0

+ 83b1HV c°S( H0)) )B1(t)'b0 b

If the hook is in contact with the ground at a time t < tC then the

angle H(t) is determined as follows: Suppose that each of a and b is a

simple graph such that if t is in [0, tc], the vector THV (t) may be

expressed by

THV(t) = a(t) B 1(t) + b(t) B 3(t) at the time t,
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and if it assumed that the point HP remains a fixed distance above the

ground until the cable is picked up by the arresting hook, that is

vHP(t) = vHP(tC),

then

VH(t) = rH(t) 13 - IHV(t) "3 - vHP(tc) * 13 v(t) + 1 bH B3(t).
b

Thus, it is evident that

VH (t) a ~t) I/B(t) - b(t))B (t) v vHP(tC),

H 1 -3 -

and

IHV(t)I 2 = a(t) 2 + b(t) 2 = (I N 2.

Consequently,

)/B 3 (t) 2 vH(t) 193 (t) 2 T" )v HPCt C)

a 2(t) [( ) + 1] + a(t) [ I + 2(3(t) ( )B(t (TB 3 t)) 2

33 3

vH(t) 2 2 VH (t) vHP (tC) vHP(tc)
-(l) + + 2]=0

S3 (t) -3(t))2 3(t)

33 YB3
and

- (VH(t) + vHP(tc)) - a(t) 3 B(t)

b(t) =
YB3(t)

3

Therefore,
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tan(4 = a(t)
b(t)

The position of the hook at the time of cable engagement with the hook

(i.e. at time t = t ) is shown below.

N

r(t C)  H

r H(t C) arstn

12 Hp~tc ) hook _

v H v~(t C)

ground surface HC

'3

At this time the point HP is at the height vHP(tc) above the ground and

also

d HP ( tc) = rHP(tC) II

(lb lb 3b
d(t ) + I H si n(HV s (tC)) + 13b IHV cosb(H(tC)) (tc) "

Hb

The number dBA R is defined as

dBAR d HP (tC ) - dHP(0).

kfter the cable has made engagement with the hook, it may now pivot

147



abo't the lateral pivot point LP. The simple graph 6H may now be

determined from the geometric arrangement shown in the diagram below.

H

[LP(t)

( t)  H(t )

HH (t)

H S

2
ii Q 

s

ground surface
73

It is seen that

(1LP (t) + 6H(t) 3 - v H(t) -Vs

and

LP(t ) + 1H(t ) )  H H ( t )  1 -HP C(tc

Also, it is supposed that

2BBR(t) x 1LP(t)) H(t) = 0.

Thus, with
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I1 Lj~P W = 1 LP'

Hp(t)I = iHp,

and

dH (t) H rH(t) 1 = d(t) + 1Hb XB'(t),
b

1LP(t) a 1(t)iB1 (t) + b3(t) B3 (t),

H(t) =a 2 (t) 1(t) + b2 (t) I3'

it follows that

a (t) TB 3 B(t) + b(t)YB3 (t)+b 2 (t) = - vH(t) -v S  (F-1)

a 1(t) YBI(t) + b1 (t) YBl(t) + a2 (t) = - (d H (t) -
H P ( t C ) ) '  (F-2)

a1 (t) + b1
2 (t) = 1 (F-3)

- I)B 1(t)t a(t)ta(t) bt) a2(t) (F-4)

- B 3(t) a 1(t) b2 (t) + 'YB 3(t) b1(t) b 2(t) = 0
312

6H2(t) 2 2 (t) + b22(t). (F-5)

The following procedure is used for solution of these equations:
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(1) Assume a number for b 1(t).

(2) Calculate at(t) from equation (F-3) (it is assumed that a1(t) is

negative).

(3) Calculate b 2t) from equation (F-i).

(4) Calculate a 2t) from equation (F-2).

(5) Calculate a new candidate for b1 (t) from equation (F-4).

(6) Go to step (2) of this process.

This procedure is terminated when the change in b 1(t) is within the

required precision.

The simple graph 17 H is determined from the equation

77 (t) = ((t) + H t) + iLP (t)) , 2'

from which the following expression is derived:

74H(t) = s(t)+ 1Mb t) B2(t) + a 1 (t) TB2(t) + b 1 (t) B2(t) -

b 13

The cable geometry at a time t in the plane of the I H(t) and IH (t)

vectors is shown in the diagram below.
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7?H(t) LP

~H(t)" E H (t)

/ HP(t)

HHP

'H 2(t)t) ECt

L ~bisectorR

SL S S

bc bc

Therefore, since

(HP (t) + iL(t)) 1 (t) H- )

(HP (t) + ]R (t)) ~H 1 (t) H- )

(HP (t) + ]L tW) H 2(t = -(be + 7Ht)

HP (t) + R(t)) H 2 t) =(bc - 77HCt))'

it follows that after the indicated vector operations are performed,

1 HP sin((a L(t) + E- (t) - E H Wt) + 1 L (t) sin(CL L (t)) = 'H (t), (F-6)

1 HP sin(QI L ( t) + (c-C(t) - CEHtW) + lR (t) sin(CL R(t)) = H(t), (F-7)
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1P cos(Cl LtM + E (t) - EH t)) L l(t) 006(a L W) = bc + 77H(t), (F-8)

~1 HP cos(QL L Wt).+ E C W) - E HtW) + lR~t W Oos(CL R(t)) =bc - 7 M(t). (F-9)

From equations (F-6) and (F-8) it is seen that

2 (be + ??Ht)) lL (t) cos(a L (t)) + 2 ft(t) lLt) hin( LMt)

+ U1HP 2  H H2tW - (be + 770 )2 - lL'(t)) a =

and with

x(t) =2 (be + 77H tW) 1 L(t),

zMt =(l HP 2 _ ~H2(t) _ (bc + 77H(t)) 2 - 1L2 Wt),

it follows that

x(t) cos(QL Lt)) + y(t) sin(Q1 Lt)) A(t z 0,

and consequently

(x 2Ct) + y 2t)) &in (GM LCt)) + 2 y(t) z(t) sin(Ql Lt)) (F-10)

+ (z 2t) - x 2(t)= 0.

If equation (F-6) is substituted into equation (F-7) and equation (F-8)

is substituted into equation (F-9) it in found that

1 Lt) sin(Cl (t) 1 (t) sin(Q Ct)) a u

1(t) cos(Qt (t)) + 1 Wt cosCOR W)= 2 bo.
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Thus,

sin(QL (t))

tan( R(t) 2 bc - cos(a. (t)) (F-1)

1L(t) L

and

1iLt) sin(CL Lt))

i(t) - (F-12)
sin((R (t))

Suppose that IE H (t)I (the limit hook angle with respect to the cable

bisector at the time t) is the largest number for IEH(t)I for which the

hook will not slip on the cable.

Therefore, if

IEH(t) is less than or equal to IEH (t)I,

then the hook will not slip on the cable and consequently

iL(t) - iR(t) = kBAR(t). (F-13)

The numbers iL(t), !R(t), GIL(t) and CIR(t) for this case may be

obtained as follows:

(1) Assume a number for 1 L(t).

(2) Calculate (aLW L from equation (F-10).

(3) Calculate . R(t) from equation (F-11).
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(4) Calculate 1R(t) from equation (F-12).

(5) Calculate a new candidate for 1 Lt) from equation (F-13).

(6) Go to step (2) in this process.

This procedure is terminated when the change in 1 Lt) is within the

desired precision.

The angle E C(t) may be determined from the equation

E t) T (CL(t) QR(t) (F-14)
C(t) = T 2 2

Further, the angle EH(t) may be found by combining equations (F-7) and

(F-8) above as follows:

Equations (F-6) and (F-8) may be rearranged to determine

6H(t) - iL W)sin(L Lt))

sin( L Wt) + Ec(t) - EH(t)) HP

and

bc + 7?H(t) - iL(t) cos(QL(t))
cos((QLCt) + E ct) - EHCt))=

csC L W +EC W H W)HP

Therefore,

sin(E H(t)) = sin(Q L(t) + E c(t)) cos(L (t) + E Ct) - H(t))

- cos(Q Lt) + E ct)) sin(a L(t) + EC t) - EH (t)),
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cos( ECH(t)) = cos(CLL(t) + Ec(t)) cos(CL(t) + EC (t) - E H(t))

+ sin(( L(t) + E C(t)) sin(CL (t) + E C(t) - E Ht)),

and

sin( E H(t)

tan(E (t)) =H cosCE Ct))

In the event that I EH(t) as found from the equation above is greater

than the limit angle I EH (t)j then the following definition is needed:

A
Suppose that E H is a simple graph such that if t > 0,

A E H(t)

E H(t) = _t I (C t) at the time t.
_ H(t HL

A
With E H(t) substituted for E Ht), equations (F-6) and (F-8) above may

be combined to derive the following equation for the number 1 L(t):

AL
2 2

L2(t) = (Ht - 1 sin([L (t) + ECt) - EH(t)) (F-15)

2
+ (be + 7H(t) - 1 HP cos(QL(t) + cC(t) - EH(t)))

The simple graph 1L may be determined from the following procedure:

(1) Assume a number for 1 L(t).

(2) Calculate CLL(t) from equation (F-10).

(3) Calculate CL R(t) from equation (F-11).

(4) Calculate R (t) from equation (F-12).
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(5) Calculate E C(t) from equation (F-14).

(6) Calculate 1L(t) from equation (F-15).

(7) Go to step (2) in this process.

This procedure is terminated when the change in 1 Lt) is within the

desired precision.

The cable tensions and hook forces may be computed from an examination

of the forces on the point HP as shown in the diagram below.

.Fgpt)

/ E (t) HP

cable . ' H

bisector

H1 W

H2 (t

TL (t) C C

From this liagram it is found that

F HP W + L(t) + fRt W O,

or

IFHF(t)I cos( E H(t)) R IR~t)t cos( Ct) + ITL(t)I cos( E C(t)),

-IFHP(t)i sin(C H t)) : lTR(t)I sin(E H t)) - ITL(t)I sin(Ec(t)).
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With /LC the friction coefficient between the hook and the cable the

limiting condition for the hook to slip on the cable is determined from

It L t = ItR(t)I exp(LC ( 7T 2 EC(t)

= iTR(t) exp(f. C (CL(t) + aQR(t)))

for the case when E H(t) is greater than zero and from

lTR(t) = ITL(t)I exp(/c ( 7T- 2 Ec(t)))

= ITL(t exp( 4C (QLL(t) + ( R(t)))

for the case when E H(t) is less than zero.

It is supposed that at a time t greater than tC there is a component

of the vector FH defined as F such that

FH H H1(t) FH I (t ) ,

and it is further supposed that with

RO(t) = 1 R(t) sin(aR (t)),

there is a prescribed simple graph FH such that

F (RO(t)) = F (t).

From this definition it follows that

FH (t) = ITR(t)I sin(GR(t)) + ITL(t)i sin(GIL(t)).

In the case where the cable is slipping on the hook and r H(t) is
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greater than zero,

i R~t ~l  F (t)

(exp(4c (QL(t) + CQR(t))) sin(( L (t) + sin(C R (t))

For the case where the cable is slipping on the hook and E H(t) is less

than zero,

ITL(01 F H(t)

(exp( f.c (QL(t) + CLR(t))) sin(aR (t)) + sin(Q L (t)))

Thus, the magnitude of the axial force in the arresting hook shank is

!F (4)u - IT(t)12 + ItL (01 2 + 2 I(t I !(t! cos(? Ec(t)) ,

and the number E (t) is calculated fromHL

(It L(t)l - ITR WtI ) sin( Ec W))

sin( E (t)) - I f HP ( 0HL j Hp(t)l

In the case where the cable is not slipping on the hook,

FP (t)
1 p~t F : ~(t)

sin(G L (t) + Ec(t)- E H (t))

IHP (t)I sin( H(t) + E c(t))

sin(2 Ec(t))
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FH1 (t) - ITL(t)I sin(QL(t))

=sin(R(t))

The diagram below shows the relationship at the time t between the unit

vectors IH (t); b = 1, 3 and the unit vectors Ic; c = , 3.

H1 (M

I (t)

H /

From this diagram it is seen that

H(t) cos(Qc (t)) II - sin(Q c(t)) ) 3'

H2(t) : 2'

CH3(t) sin(aC (t)) I + cos(Qc (t)) )3'

where

- b 2(t)

tan(C Ct)) -C a2(t)

This transformation may be written in the form

H t) = 'H(t) Yb'
a a
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where

'H(t) = cos(Qc(t)),

H3H(t) = - sin(Q c(t)),
1

YH(t) 
,

2

HI(t) = sin(Qc.(t)),
3

'YH 3(t) = cos(QcLC(t)),

and all other XHa(t) = 0.
b

The transformaLion from the the unit vectors I H (t); a 1, 3 to the
a

unit vectors 1H (t); b = 1, 3 may be expressed by

H (t) = CHH (t) IHa(t)-
b b a

From the definition of the unit vector function il it follows that

i (t) = sin(L (t) + c(t) - EH(t)) 1H1(t)

+ cos(GmLt+ Ec(t) - H t)) I H(t),

where

SHi(t) = sin( L(t) + C(t) - E H(t)),

CL 2(t) = cos(Q L(t) + EC (t) - E (t)),n1

CE 3(t) = 0.
H1
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Therefore,

iH (t) = CLHa(t) H C(t) c"
b b a

The unit vector function iH may be determined from the vector

equations

B (t) H (t) 0, (F-16)

LP (t) iH 3(t) : 0,

or

(a1 ( B1 (t) + b1(t) iB2(t)) H3(t), (F-17)

and

H(t) H (t) 
(F-18)i3 i3

After the vector operations in equations (F-16), (F-17) and (F-18) have

been performed, they may be rewritten as follows:

YBb(t) LH d(t) H (t) bc =0.
2 3 d

(a1(t) 'YB1(t) + b1 (t) B(t))C Gd(t) THf(t) 3 cf = 0.
1 2 3 d

a H H(t) CLH ab "
3 3

These equations may be used to find the direction cosines

QH a(t); a = 1, 3.

3

From the definition of the vector function FHO
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FH Wt = F H(t) 1 I (t) = HP*

In addition, P H may be determined from

H t) H a a

wl'ere

F H1(t) =- F HP(t) cos(Q1 (t)) sin(QL (t) + E C(t) H (t)),

F H 2(t) =- F HP(t) cos(GIL (t) + E c(t) - E H(t)),

F H3(t) F HP (t) sin(CL C(t)) sin( L (t) + E C (t) - EH (t)).

Since these relations are true for each number t greater than ty it

follows that

F H F HPcosLO. CI sin[GL + E C- E H],

FH F HP Co~ L C H EH1
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APPENDIX G

TRANSFORMATIONS

The orientation of the airframe relative to the ground is shown in the

diagram below. The point Q is the ground reference point and the point N is

the airframe reference point.

Airframe

plae) (erpndiula (to ground plan)

Forward B 1 N B 2

B

-. i,_,Ground

/Plane

(in ground

1 1 plane)

~~(in gron
plane ' 3 (perpendicular to ground plane) /

The transformation from the ground based unit vectors (I b; b 1 , 3) to

the airframe fixed unit vectors (1B ; c = 1, 3) may be established through

cthe use of the yaw, pitch and roll Euler angles. This may be accomplished

with the aid of the diagram below.
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B 2

. (t (t) O (t)

= B2 (t)

a 
(t) airframe

\ t) \longitudinal axis
B3( N (t)

To illustrate how these Euler angles are used in the transformation

from the ground based unit vectors to the airframe fixed unit vectors

suppose that if t > 0, the airframe unit vectors i (t); b = 1, 3 are

initially oriented the same as the ground based unit vectors I ; c = 1, 3.

Now suppose that the unit vectors iB (t) and 'B (t) are rotated as shown by

the "yaw angle" q-(t), with the unit vector 1B (t) held fixed. In this

position it is seen that

i (t) = cos(q'(t)) II + sin(4 j(t)) 29

i B2 (t) = - sin(4 (t)) II + cos(4 j(t)) I25

B 3(t) = I3
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From the orientation described above now suppose that the airframe unit

vectors i B(t) and B3(t) are rotated as shown by the "pitch angle" 9w/.

with the unit vector Bt) held fixed. In this position it is found that

BB 1

I Wt =cos(t"(tW) cos(Yj(t)) I+ Cos(&((t)) sin( P(t)) T - sin(&(t))YB1  2 3

(t) = - sin('Pt)) I + cos(4 j(t)) '2'B21

B(t)W sin(G(t)) cos( 4 J(t)) 11 + sin((t)) sin(P(t)) 1 + cosA&(t)) 13.

Finally, suppose that the airframe unit vectors B(t) and B t)

are rotated as shown by the "roll angle" (t), with the vector 1B (t)

held fixed. In this position the airframe unit vectors are aligned with the

airframe as defined in the main body of the report and the transformation

from the ground based unit vectors to the airframe unit vectors is found to

be

B1(t) = cos(: (t)) cosqjt)) + Cos(6t)) sin(T*tn '2

- sin(6 (t)) 3

Ct (- Wcos(((t)) sin(41(t)) + sin (t)) sin(&(t)) cos( 4 j(t)))

" (cos((I;(t)) cos(4P(t)) + sin((t)) sin(O(t)) sin(4(t))) 12

+ sin(4,(t)) cos( C'(t)) 13V

SB(t) = (sin(k(t)) sin 4 (t)) + cos(4(t)) sin(&(t)) cos( P(t))) 1
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* (- sin(4Wt) cosOPj(t)) + Cos(4(t)) sin(&t)) sin(4 j(t))) 1 2

* cos((t)) cos( ((t)) -3.

Now suppose that I B ; c = 1, 3 is a simple surface such that
c

the transformation above may be written in the form

B (t) = iBh[&, 4, 4 ](t) 1h,  (G-1)
C C

or

B t) = B h(t) ih- (G-2)
c c

In the Kinetic Energy Formulation r was defined as the vector function

such that if t > 0, F(t) is the vector from the point Q to the jig condition

location of the point N at the time t. Further, F(t) was defined as

r(t) = b(t) 1 b .

It follows then that

F'(t): = b '(t ) 1 b = V B b(t) 1Nb (t), (G-3)

where V Bb(t) was defined as the bth body axis component of the velocity

vector.

From equation (G-3) it is seen that

Vb(t)  (I WBd1
B bd B di t) c()
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But, from equation (G-2) it is found that

( i "- d ( t ) ) = T f (t) cf

Therefore,

Vb = TB (t) 8 bd

In tho Vinetic Energy Formulation the transformation from the

generalized coordinate velocities to the quasi-coordinate velocities was

given as

Va = a qb,*

It follows therefore for a in the interval [1, 3] and b in the interval

[1, 3] that

CLa ='YBd 3 d ac.

c

The transformation from the quasi-coordinate velocities to the

generalized coordinate velocities was given by

q a aV b.

Therefore, for a in [1, 31, b in (1, 3] and c in [1, 3] it follows that

b
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The CL a terms where a is in [4, 6] and b is in [4, 6] may be determined
b

as follows: Since the relation in (G-1) is true for each positive number t

then the vector function iB may be differentiated to obtain
c

hph ~ h 4  )

1B B:( h +h;OO1+ B; p + -h1 h
c c c B;4

But,

h Bf 3 fh 8 dr IBd r

and

iB B : Bx 1B
c c

Se bdf og f dg Bb "

Consequently,

ebdf Bg 8 f 8dg (G-4)

B cf dg+?/f h

e' d

When the operations in equation (G-4) are performed it is found that

-B - sin[& 4-'I,
B2 =cos(4 ] 01 + coa[O] xin[cf] 4.',

B  - sin[4)] ' + cos[ ] Cos0][ q'.
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It is evident then from the definition of C ' as given in the main

body of the report, that the following terms may be derived:

4 o. a 4. a 4 - sin[&)]
4 O 5  6

C15 = cos[p] Q 0. a - COS1 sin[,].

CL6=-sno>-C . CL6 = cosi:O] cos[dxl.
[ 5 6

nb
Further, for a in [4, 6], b in [4,6] and c in [4, 6 ], is defined by

Therefore, the following relations are determined:

4 [.- sin[
It 4 .15 = Cos 186= sn

5 = I. 5 = tan[O] sin[ ]. 5 = tan[O] cos[ ].

. 6= sin[]/cos[O. 86 cos[ ]/cos[]4 ' 5 6--"-

In many cases it is desirable to have a reference system that is fixed

relative to the airframe but rotated to be aligned with a gear component

such as a shock strut. Such a reference system can be defined through the

use of the Euler angles ?G and G defined in the main body of the report
a a

and il1ustrntpd in the diagram below.
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?
3G (t) a

G a G a ( t )

a a 2

B

a

iG at~

B3 B (t)

To establish the required transformation suppose that the at a time t

the a gear unit vectors iG (t); c = 1, 3 are aligned with the airframe
a

C

fixed unit vectors i (t); b = 1, 3. Now suppose that the a gear fixed unitBb

vectors 1G (t) and 1G (t) are rotated as shown below through the pitch
a1  a3

Euler angle G with 1 (t) held fixed.
a a2

In this position it is seen that

1G (t) cos(77G B (t) - sin(7?G ) (t),a1  a 1 a 3

G (t) B 2 (t),
a2

Ga3(t) sin(7?G ) B B1 ( t) + cos()G B 3(t).
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From this orientation now suppose that the a gear unit vectors IG  t)
a2

and G (t) are rotated to their final position as shown in the diagram
a3

below through the roll Euler angle G with G (t) held fixed.
a a1

In this alignment it is found that

Ga(t) = (OG -B! - sin( 7 G ) iB t),
a1  a 1a 3

G tj = sin( G s)n\1G) + cos( eG ) B2(t)a2  a a a 2

+ cos(7?G ) sin( G G B (t),

G  a (t) = sin(lG ) cos( G B1 t) - sin( G ) B 2 t)

+ cos( 7 G ) cos( G ) B 3(t),

which may be written in the form

G t) G b (t). (G-5)
a a b

c c

The G (t); c = 1, 3 unit vectors are illustrated in the diagram
a

c

below for the case where it is desired to have the shock strut piston

centerline aligned a time t with the vector IG (t).
a3
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IB2 (t)
B 2- (t)

B1  N

e(t) (t)

Ta 2

iG (t)G

Ga3 /
shock strut
piston centerline

/
a

For gears with a castoring degree of freedom it is convenient to have a

set of unit vectors fixed in the gear. These unit vectors,

IG (t); b = 1, 3 are shown relative to the iG  (t); b = 1, 3 unit vectors
ab ab

in the diagram below.

G (t)
G  (t) a2A1 UAI - t" G((t

F a

V G ) (t 3G (t)

aa

G at (ta2

Gi (t)
a3
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It is seen that

i G (t) = cos(OG (t))G (t) - sin(0 G t))JG (t),
a1  a a1  a a2

G t) = sin(0G (t)) G (t) + cos(OG (t)) JG (t),
a2  a a1  a a2

(t) = G (t),

a3 a3

which may be expressed as

bt C G (t) JG (t). 
(G-6)

a a abc cb

Now suppose that if t > 0, c is in [1, 3] and d is in [1, 3] that

there is a transformation XG c(t) such that
ad

G t) = kG c(t) iG (t) at the time t.
ad  ad  ac

It is evident that

ad aa aiGa tca Wt - Gac~ a W 8Cg G Gab W 8 bd'
g dg

Thus,

Gct) = ClG t) 8 df 8
ad a

Therefore, it is found that

JG t) = CI e( ) de cg iG (t). (G-7)
a d a a

g c
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Equations (G-5) and (G-7) may be combined to obtain the transformation

jG (t) = C G e YG bt) 6 de 86 iB b(t).
ad a ac

Thus, if

C b(t) = G e YG b(t) 5de 6
ad ag ac

then

b(

jG (t) = G b W (t). (G-8)ad ad  ib

Equation (G-8) may be rewritten in an expanded form as

S(t) = (cos( t) s(G ) + sin(OG (t)) sin(7G )sin( G B (t)a1  a a a a a I

+ sin(OG (t)) Cos(4G B (t)a a B2

+ (- COS(OG (t)) sin(7?G ) + sin(OG (t)) cos( 7 G )sin( G ) B B (t),
a a a a a 3

JG (t) (- sin(OG (t)) cos( 7 G )+ cos(OG (t)) sin( 7G )sin( G 1B (t)a2  a a a a a

+ cos(OG (t)) Cos ( G) i B t)a a B2

+ (sinOG t)) sin( ?G )+ cos(OG (t)) cos(?G )sin( G 1 'B 3(t),+ sn a a a a a 3

3G (t) = sin(lG ) cos( G ) 'B (t) - sin(CG 1B (t)a3  a a B1 a B2

+ cos(7)G COS( G ) B 3(t).
a a 3

The a gear wheel fixed unit vectors are oriented as shown in the
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diagram below

Ja (t) / Gae t

IG 
T 

2

a

kG (t)
a 3

./1 ia (t)

-kk (t)
r G

axle 3

centerline

At a time t the vector kG (t) is aligned with the axle centerline

a 2

and is expressed in terms of the a gear fixed unit vectors

3G (t); b = 1, 3 by the relation
ab

k t) t' e (t) ]e (t), (G-9)
a2  a2 ab

where the kG (t); b = 1, 3 are direction cosines determined from the
a2

rotation of the axle that is due to stroking of the a gear shock strut. The

general relationship between these two sets of unit vectors is

kG a t G a(t) JG ()
a a ab

where the unit vectors k G (t) and k. (t) are orthogonal to each other and
a1  a3
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to kG (t), but otherwise arbitrary. For the case where the a gear
a2

castors, it is usual for kG (t) to be orthogonal to jG (t).
a2  a3

The wheel-ground reference system unit vector functions

I W ; b = 1, 3 are defined in Appendix E in terms of the vector functions
ab

kG and b ; b = 1, 3.
a2

At a time t the transformations THb(t) and QL Hc(t), which are defined

c d

in Appendix F, are used to relate the unit vectors Ib; b = 1, 3,

H (t); c = 1, 3 and 'H (t); d 1, 3 through the relations

H (t) K 7H(t) by
c c

H (t) H (t)

Hd d c

e ~ 7H ( t )
IH(t) H(t) H b'

Hd d e
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